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Abstract

The co-authorship network of scientists represents a prototype of complex evolving networks.
In addition, it o8ers one of the most extensive database to date on social networks. By mapping
the electronic database containing all relevant journals in mathematics and neuro-science for an
8-year period (1991–98), we infer the dynamic and the structural mechanisms that govern the
evolution and topology of this complex system. Three complementary approaches allow us to
obtain a detailed characterization. First, empirical measurements allow us to uncover the topolog-
ical measures that characterize the network at a given moment, as well as the time evolution of
these quantities. The results indicate that the network is scale-free, and that the network evolution
is governed by preferential attachment, a8ecting both internal and external links. However, in
contrast with most model predictions the average degree increases in time, and the node separa-
tion decreases. Second, we propose a simple model that captures the network’s time evolution.
In some limits the model can be solved analytically, predicting a two-regime scaling in agree-
ment with the measurements. Third, numerical simulations are used to uncover the behavior of
quantities that could not be predicted analytically. The combined numerical and analytical results
underline the important role internal links play in determining the observed scaling behavior and
network topology. The results and methodologies developed in the context of the co-authorship
network could be useful for a systematic study of other complex evolving networks as well,
such as the world wide web, Internet, or other social networks. c© 2002 Published by Elsevier
Science B.V.
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1. Introduction

One of the most proli$c mathematicians of all time, Paul Erdős has written over
1400 papers with over 500 co-authors. This unparalleled productivity inspired the con-
cept of the Erdős number, which is de$ned to be one for his many co-authors, two
for the co-authors of his co-authors and so on. The tightly interconnected nature of
the scienti$c community is reGected by the conjecture that all publishing mathemati-
cians, as well as many physicists and economists have rather small Erdős numbers
[1]. Besides the immediate interest for scientometrics, the co-authorship networks is of
general interest for understanding the topological and dynamical laws governing com-
plex networks [2–17], as it represents the largest publicly available computerized social
network.
Social networks have been much studied in social sciences [18,19]. A general feature

of these studies is that they are restricted to rather small systems, and often view
networks as static graphs, whose nodes are individuals and links represent various
quanti$able social interactions.
In contrast, recent approaches with methodology rooted in statistical physics focus

on large networks, searching for universalities both in the topology of the web and in
the dynamics governing its evolution. These combined theoretical and empirical results
have opened unsuspected directions for research and a wealth of applications in many
$elds ranging from computer science to biology [4,12–14,18,20–24]. Three important
results seem to crystallize in this respect: First, most networks have the so-called small
world property [2,19], which means that the average separation between the nodes is
rather small, i.e., one can $nd a short path along the links between most pairs of nodes.
Second, real networks display a degree of clustering higher than expected for random
networks [2,4]. Finally, it has been found that the degree distribution contains important
information about the nature of the network, for many large networks following a
scale-free power-law distribution, inspiring the study of scale-free networks [3,5–8,12–
14,24].
In addition to uncovering generic properties of real networks, these studies signal

the emergence of a new set of modeling tools that considerably enhance our ability
to characterize and model complex interactive systems. To illustrate the power of this
these advances we choose to investigate in detail the collaboration network of scientists.
Recently, Newman has taken an important step towards applying modern network

ideas to collaboration networks [10,11]. He studied several large database focusing on
several $elds of research over a 5-year period, establishing that collaboration networks
have all the general ingredients of small world networks: they have a surprisingly
short node-to-node distance and a large clustering coeJcient [10], much larger than
the one expected from a random Erdős–R(enyi type network of similar size and av-
erage connectivity. Furthermore, the degree distribution appears to follow a power
law [11].
Our study takes a di8erent, but complementary approach to collaboration networks

than that followed by Newman. We view collaboration networks as prototype of evolv-
ing networks, where the accent is on dynamics and evolution. Indeed, the co-authorship
network constantly expands by the addition of new authors to the database, as well as
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the addition of new internal links representing papers co-authored by authors that were
already part of the database. The topological properties of these networks are deter-
mined by these dynamical and growth processes. Consequently, in order to understand
their topology, we $rst need to understand the dynamical process that determines their
evolution. In this aspect Newman’s study focuses on the static properties of the collab-
oration graph, while our work investigates the dynamical properties of these networks.
We show that such dynamical approach can explain many of the static topological
features seen in the collaboration graph.
It is important to emphasize that the properties of the co-authorship network are

not unique. The WWW is also a complex evolving network, where nodes and links
are added (and removed) at a very high rate, the network topology being profoundly
determined by these dynamical features [3,20,21,25]. The actor network of Hollywood
is very similar to the co-authorship network, because it grows through the addition of
new nodes (actors) and new links (movies linking existing actors) [2,4,14]. Similarly,
the nontrivial scaling properties of many cellular [23], ecological [24] or business
networks are all determined by dynamical processes that contributed to the emergence
of these networks. So why single out the collaboration network as a case study? A
number of factors have contributed to this choice. First, we needed a network for
which the dynamical evolution is explicitly available. That is, in addition to a map
of the network topology, it is important to know the time at which the nodes and
links have been added to the network, crucial for revealing the network dynamics. This
requirement reduces the currently available databases to two systems: the actor network,
where we can follow the dynamics by recording the year of the movie release, and
the collaboration network for which the paper publication year allows us to track the
time evolution. Of these two, the co-authorship data is closer to a prototypical evolving
network than the Hollywood actor database for the following reasons: in the science
collaboration network the co-authorship decision is made entirely by the authors, i.e.,
decision making is delegated to the level of individual nodes. In contrast, for actors
the decision often lies with the casting director, a level higher than the node. While
in the long run this di8erence is not particularly important, the collaboration network
is still closer in spirit to a prototypical evolving network such as social systems or the
WWW.
Our work stands on three pillars. First, we use direct measurements on the avail-

able data to uncover the mechanism of network evolution. This implies determining
the di8erent parameters and uncovering the various competing processes present in the
system. Second, building on the mechanisms and parameters revealed by the measure-
ments we construct a model that allows us to investigate the large scale topology of the
system, as well as its dynamical features. The predictions o8ered by a continuum the-
ory of the model allow us to explain some of the results that were uncovered by ours,
as well Newman’s measurements. The third and $nal step will involve computer simu-
lations of the model, serving several purposes: (i) It allows us to investigate quantities
that could not be extracted from the continuum theory; (ii) Veri$es the predictions of
the continuum theory; (iii) Allows us to understand the nature of the measurements
we can perform on the network, explaining some apparent discrepancies between the
theoretical and the experimental results.
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Fig. 1. (a) Cumulative number of papers for the M and NS databases in the period 1991–98. The inset
shows the number of papers published each year. (b) Cumulative number of authors (nodes) for the M and
NS databases in the period 1991–98. The inset shows the number of new authors added each year.

2. Databases: co-authorship in mathematics and neuro-science

For each research $eld whose practitioners collaborate in publications one can de$ne
a co-authorship network which is a reGection of the professional links between the
scientists. In this network the nodes are the scientists and two scientists are linked if
they wrote a paper together. In order to get information on the topology of a scienti$c
co-authorship web one needs a complete dataset of the published papers, ideally from
the birth of the discipline until today. However, computer databases cover at most
the past several decades. Thus any study of this kind needs to be limited to only a
recent segment of the database. This will impose unexpected challenges, that need to
be addressed, since such limited data availability is a general feature of most networks.
The databases considered by us contain article titles and authors of all relevant

journals in the $eld of mathematics (M) and neuro-science (NS), published in the
period 1991–98. We have chosen these two $elds for several reasons. A $rst factor was
the size of the database: biological sciences or physics are orders of magnitude larger,
too large to address their properties with reasonable computing resources. Second, the
selected two $elds o8er suJcient diversity by displaying di8erent publishing patterns:
in NS collaboration is intense, while mathematics, although there is increasing tendency
towards collaboration [26], is still a basically single investigator $eld.
In mathematics our database contains 70,975 di8erent authors and 70,901 papers for

an interval spanning 8 years. In NS the number of di8erent authors is 209,293 and the
number of published papers is 210,750. A complete statistics for the two considered
database is summarized in Fig. 1, where we plot the cumulative number of papers and
authors for the period 1991–98. We consider “new author” an author who was not
present in the database from 1991 up to a given year.
Before proceeding we need to clarify a few methodological issues that a8ect the

data analysis. First, in the database the authors are represented by their surname and
initials of $rst and middle name, thus there is a source of error in distinguishing some
of them. Two di8erent authors with the same initials and surname will appear to be the
same node in the database. This error is important mainly for scientists of Chinese and
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Japanese descent. Second, seldom a given author uses one or two initials in di8erent
publications, and in such cases he=she will appear as separate nodes. Newman [10]
showed that the error introduced by those problems is of the order of a few percents.
Our results are also a8ected by these methodological limitations, but we do not expect
that it will have a signi$cant impact on our results.

3. Data analysis

In this section, we investigate the topology and dynamics of the two databases, M
and NS. Our goal is to extract the parameters that are crucial to the understanding of
the processes which determine the network topology, o8ering input for the construction
of an appropriate model.

3.1. Degree distribution follows a power-law

A quantity that has been much studied lately for various networks is the degree
distribution, P(k), giving the probability that a randomly selected node has k links.
Networks for which P(k) has a power-law tail, are known as scale-free networks
[3,13]. On the other hand, classical network models, including the Erdős–R(enyi [27,28]
and the Watts and Strogatz [4] models have an exponentially decaying P(k) and are
collectively known as exponential networks. The degree distributions of both the M
and NS data indicate that collaboration networks are scale-free. The power-law tail is
evident from the raw, uniformly binned data (Fig. 2a and b), but the scaling regime
is better seen on the plot that uses logarithmic binning, reducing the noise in the tail
(Fig. 2c). The cumulative data with logarithmic binning indicates �M=2:4 and �NS=2:1
for the two databases [29]. 1

We will see in the coming sections that the data indicates the existence of two
scaling regimes with two di8erent scaling exponents. The combination of these two
regimes could easily give the impression of an exponential cuto8 in the P(k) for
large k. Further analysis, o8ered in Sections 4–6, indicates that a consideration of two
scaling regimes o8ers a more accurate description.

3.2. Average separation decreases in time

The ability of two nodes, i and j, to communicate with each other depends on the
length of the shortest path, lij, between them. The average of lij over all pairs of
nodes is denoted by d = 〈lij〉, and we call it the average separation of the network,
characterizing the networks interconnectedness. Large networks can have surprisingly
small separation, explaining the origin of the small-world concept [2,19]. Determining
the average separation in a large network is a rather time-consuming procedure. Usually,

1 Note that such skewed distributions have been already modeled, from a di8erent perspective, in scien-
tometrics.
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Fig. 2. Degree distribution for the (a) M and (b) NS database, showing the data based on the cumulative
results up to years 1993 (×) and 1998 (•). (c) Degree distribution shown with logarithmic binning computed
from the full dataset cumulative up to 1998. The lines correspond to the best $ts, and have the slope 2.1
(NS, dotted) and 2.4 (M, dashed).

sampling a fraction of all nodes and determining their distance from all other points
gives reasonable results. The results for the cumulative database are shown in Fig. 3.
The $gure indicates that d decreases with time, which is highly surprising because

all network models so far predict that the average separation should increase with
system size [20,28]. The decreasing trend observed by us could have two di8erent
origins. First, it is possible that indeed, the separation does decrease as internal links,
i.e., papers written by authors that were previously part of the database increase the
interconnectivity thus decreasing the diameter. Second, the decreasing diameter could
be a consequence of the fact that we have no access to the full database, but only
starting from year 1991. As we demonstrate in Section 5, such incomplete dataset could
result in an apparently decreasing separation even if otherwise for the full system the
separation increases.
One can note the slow convergence of the diameter and the more connected nature

of the NS $eld expressed by a smaller separation. The slow convergence indicates that
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Fig. 3. Average separation in the M and NS databases. The separation is computed on the cumulative data
up to the indicated year. The error bars indicate the standard deviation of the distances between all pairs of
nodes.

perhaps even longer time interval is needed to reach the asymptotic limit, in which
di8erent relevant quantities take up a stationary value. The smaller separation for the
NS $eld is expected, since mathematicians tend to work in smaller groups and write
papers with fewer co-authors.

3.3. Clustering coe9cient decays with time

An important phenomena characterizing the deviation of real networks from the
completely random ER model is clustering. The clustering coeJcient, a quantitative
measure of this phenomena, C, can be de$ned as follows [4]: pick a node, i that has
links to ki other nodes in the system. If these ki nodes form a fully connected clique,
there are ki(ki − 1)=2 links between them, but in reality we $nd much fever. Let us
denote by Ni the number of links that connect the selected ki nodes to each other. The
clustering coeJcient for node i is then Ci = 2Ni=ki(ki − 1). The clustering coeJcient
for the whole network is obtained by averaging Ci over all nodes in the system, i.e.,
C = 〈Ci〉i. In simple terms the clustering coeJcient of a node in the co-authorship
network tells us how much a node’s collaborators are willing to collaborate with each
other, and it represents the probability that two of its collaborators wrote a paper
together. The clustering coeJcient for the cumulative network as a function of time is
shown in Fig. 4.
The results, in agreement with the separation measurements, suggest a stronger

interconnectedness for the NS compared with M, and a slow convergence in time
to an asymptotic value.
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Fig. 4. Clustering coeJcient of the M and NS database, determined for the cumulative data up to the year
indicated on the t-axis.

3.4. Relative size of the largest cluster increases

It is important to realize that the collaboration network is fragmented in many clus-
ters. There are several reasons for this. First, in every $eld there are scientists that
do not collaborate at all, that is they are the only authors of all papers on which
their name appears. This is more frequent in mathematics, which despite an increasing
tendency toward collaboration [26], is still more fragmented than physics or neural
science. Second, and most important, the database contains papers published only after
1990. Thus, there is a possibility that two authors co-authored a paper before 1990,
but in our database they appear as disconnected.
If we look only at a single year, we see many isolated clusters of authors. The

cumulative dataset containing several years develops a giant cluster, that contains a
large fraction of the authors. To investigate the emergence of this giant connected
component we measured the relative size of the largest cluster, r, giving the ratio
between the number of nodes in the largest cluster and the total number of nodes in
the system. A cluster is de$ned as a subset of nodes interconnected by links. Results
from our cumulative co-authorship networks are presented in Fig. 5. As expected, in
M the fraction of clustered researchers is considerably smaller than in NS.
The continuous increase in r may appear as the scenario commonly described as

percolation [30] or the much studied emergence of the giant component in random
networks [28]. However, the process leading to this giant cluster is fundamentally
di8erent from these much studied phenomena. In most research $elds, apart from a
very small fraction of authors that do not collaborate, all authors belong to a single
giant cluster from the very early stages of the $eld. That is, the system is almost
fully connected from the very $rst moment. The only reason why the giant cluster
in our case grows so dramatically in the $rst several years is that we are missing
the information on the network topology before 1991. A good example is the actor
network, where the huge majority of the actors are part of the large cluster at any
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Fig. 5. Relative size of the largest cluster for the M and NS database. Results are computed on the cumulative
data up to the given year.

stage of the network, starting from early 1900s until today. However, if we would
start recording collaborations only after 1990 for example, the data would indicate,
incorrectly, that many actors are disconnected. The increasing r indicates only the fact
that we are reconstructing the already existing giant cluster, and it is only a partial
measure of its emergence.
Finally, the fast convergence of the NS cluster size to an approximately stationary

value around 0.9 indicates that after 1994 the network reached a roughly stationary
topology, i.e., the basic alliances are uncovered. This does not seems to be the case
for M, where after 10 years r still increases, perhaps due to smaller publication and
collaboration rate in the $eld.

3.5. Average degree increases

With time the number of nodes in our co-authorship network increases due to arrival
of new authors. The total number of links also increases through the connections made
by new authors with old ones and by new connections between old authors. A quantity
characterizing the network’s interconnectedness is the average degree 〈k〉, giving the
average number of links per author. The time dependence of 〈k〉 for the cumulative
network is shown in Fig. 6, indicating an approximately linear increase of 〈k〉 with time.
This is a rather important deviation from the majority of currently existing evolving
network models, that assume a constant 〈k〉 as the network expands. As expected, the
average degree for M is much smaller than for NS.

3.6. Node selection is governed by preferential attachment

Classical network models assume complete randomness, i.e., the nodes are connected
to each other independent of the number of links they already had [2,27,28]. The dis-
covery of the power-law connectivity distribution required the development of new



A.L. Barab*asi et al. / Physica A 311 (2002) 590–614 599

Fig. 6. Average number of links per node (〈k〉) for the M and NS database. Results are computed on the
cumulative data up to the given year.

modeling paradigms. A much used assumption is that in scale-free networks nodes
link with higher probability to those nodes that already have a larger number of links,
a phenomena labeled as preferential attachment [3,13]. Implicitly or explicitly, prefer-
ential attachment is part of all network models that aim to explain the emergence of the
inhomogeneous network structure and power-law connectivity distribution [5–8]. The
availability of dynamic data on the network development allows us to investigate its
presence in the co-authorship network. For this network preferential attachment appears
at two levels, that we discuss separately.
(i) New nodes: For a new author, that appears for the $rst time on a publication,

preferential attachment has a simple meaning. It is more likely that the $rst paper will
be co-authored with somebody that already has a large number of co-authors (links) that
with somebody less connected. As a result “old” authors with more links will increase
their number of co-authors at a higher rate than those with fever links. To investigate
this process in quantitative terms we determined the probability that an old author with
connectivity k is selected by a new author for co-authorship. This probability de$nes
the �(k) distribution function. Calling “old authors” those present up to the last year,
and “new author” those who were added during the last year, we determine the change
in the number of links, Sk, for an old author that at the beginning of the last year
had k links. Plotting Sk as a function of k gives the function �(k), describing the
nature of preferential attachment. Since the measurements are limited to only a $nite
(ST = 1 year) interval, we improve the statistics by plotting the integral of �(k):

�(k) =
∫ k

1
�(k ′) dk ′ : (1)

If preferential attachment is absent, �(k) should be independent of k, as each node
grows independently of its degree, and �(k) is expected to be linear. As Fig. 7 shows,
we $nd that �(k) is nonlinear, increasing as �(k) ∼ k�+1, where the best $t gives � �
0:8 for M and � � 0:75 for NS. This implies that �(k) ∼ k�, where � is di8erent from
1 [31]. As simulations have shown, such nonlinear dependence generates deviations
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Fig. 7. Cumulated preferential attachment (�(k)) of incoming new nodes for the M and NS database. Results
computed by considering the new nodes coming in the speci$ed year, and the network formed by nodes
already present up to this year. In the absence of preferential attachment �(k) ∼ k, shown as continuous
line on the $gures.

from a power law P(k) [31]. This was supported by analytical calculations [8], that
demonstrated that the degree distribution follows a power law only for � = 1. The
consequence of this nonlinearity will be discussed below.
(ii) Internal links: A large number of new links appear between old nodes as the

network evolves, representing papers written by authors that were part of the network,
but did not collaborate before. Such internal links are known to e8ect both the topology
and dynamics of the network [5]. These internal links are also subject to preferential
attachment. We studied the probability �(k1; k2) that an old author with k1 links forms
a new link with another old author with k2 links. The �(k1; k2) probability map can
be calculated by dividing N (k1; k2), the number of new links between authors with k1
and k2 links, with the D(k1; k2), number of pairs of nodes with connectivities k1 and
k2 present in the system:

�(k1; k2) =
N (k1; k2)
D(k1; k2)

: (2)

The three-dimensional plot of �(k1; k2) is shown in Fig. 8, the overall behavior indi-
cating preferential attachment: �(k1; k2) increases with as either k1 or k2’s increase.

A natural hypothesis is to assume that �(k1; k2) factorizes into the product k1k2. As
Fig. 9 shows, we indeed $nd that

�(k1k2) =
∫ k1k2

1
�(k ′1k

′
2) d(k

′
1k

′
2) (3)

can be well approximated with a slope 2 as a function of k1k2, indicating that for
internal links the preferential attachment is linear in the degree.
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Fig. 8. Internal preferential attachment for the M and NS database, 3D plots: �(k1; k2) as a function of k1
and k2. Results computed on the cumulative data in the last considered year.

Fig. 9. Cumulated internal preferential attachment (�(k)) for the M and NS database, scaling as a function
of the k1k2 product. Results computed on the cumulative data in the last considered year. The straight lines
have slope 1, expected for �(k1k2) if there would be no preferential attachment.

3.7. Modeling the web of science

In this section, we use the obtained numerical results to construct a simple model
for the evolution of the co-authorship network. It is important to emphasize that the
purpose of the model is to capture the main mechanisms that a8ect the evolution
and the scaling of the network, and not to incorporate every numerical detail of the
measured web. However, the advantage of the proposed model is its Gexibility: features,
neglected here, can be incorporated into the current modeling framework.
We denote by ki(t) the number of links node i has at time t; by T (t) and N (t) the

total number of links and total number of nodes at time t, respectively.
We assume that all nodes present in the system are active, i.e., they can author

further papers. This is a reasonable assumption as the time-span over which data is
available to us is shorter than the professional lifetime of a scientist. In agreement with
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Fig. 1, we consider that new researchers join the $eld at a constant rate, leading to

N (t) = �t : (4)

The average number of links per node in the system at time t is thus given by

〈k〉= T (t)
N (t)

: (5)

Fig. 9 suggests that the probability to create a new internal link between two existing
nodes is proportional with the product of their connectivities. Consequently, denoting
by a the number of newly created internal links per node in unit time, we write the
probability that between node i and j a new internal link is created as

Tij =
kikj∑′
s;m kskm

2N (t)a ; (6)

where the prime sign indicates that the summation is done for s �=m values.
The measurements also indicated (Fig. 7) that new nodes link to the existing nodes

with preferential attachment, �(k) follows k� with � � 0:75 − 0:8. Aiming to obtain
an analytically solvable model, at this point we neglect this nonlinearity and we ap-
proximate �(k) with a linear k dependence. The e8ect of the nonlinearities will be
discussed in Section 6. Thus, if node i has ki links, the probability that an incoming
node will connect to it is given by

Ti = b
ki∑
j kj

; (7)

where b is the average number of new links that an incoming node creates.
We have thus formulated the dynamical rules that govern our evolving network

model, capturing the basic mechanism governing the evolution of the co-authorship
network:

(1) Nodes join the network at a constant rate.
(2) Incoming nodes link to the already present nodes following preferential attachment

(7).
(3) Nodes already present in the network form new internal links following preferential

attachment (6).
(4) We neglect the aging of nodes, and assume that all nodes and links present in the

system are active, able to initiate and receive new links.

In the model, we assume that the number of authors on a paper, m, is constant. In
reality m is a stochastic variable, as the number of authors varies from paper to paper.
However, for the scale-free model the exponent � is known to be independent of m,
thus making m a stochastic variable is not expected to change the scaling behavior.

4. Continuum theory

Taking into account that new links join the system with a constant rate, �,
the continuum equation for the evolution of the number of links node i has can be
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written as

dki
dt

=
b�ki∑
j kj

+ 2N (t)a
∑
j

′ kikj∑′
s;m kskm

: (8)

The $rst term on the right-hand side describes the contribution due to new nodes (7)
and the second term gives the new links created with already existing nodes (6). The
total number of links at time t can be computed taking into account the internal and
external preferential attachment rules:

∑
i

ki = T (t) =
∫ t

0
2[N (t′)a+ b�] dt′ = t�(at + 2b) : (9)

Consequently, the average number of links per node increases linearly in time,

〈k〉= at + 2b (10)

in agreement with our measurements on the collaboration network (Fig. 6). The master
equation (8) can be solved if we approximate the double sum in the second term.
Taking into account that we are interested in the asymptotic limit where the total
number of nodes is large relative to the connectivity of the nodes, we can write

∑
s;m

′
kskm =

∑
s

ks
∑
m

km −
∑
m

k2m ≈
(∑

i

ki

)2
: (11)

We have used here the fact that T (t)2 depends on N 2, while
∑

i k
2
i depends only

linearly on N (we investigate the N → ∞ limit). Using (11) Eq. (8) now becomes

dki
dt

=
bki

t(at + 2b)
+

2kia
at + 2b

: (12)

Introducing the notation �= a=b, we obtain

dki
dt

=
ki
t
2t�+ 1
t�+ 2

: (13)

This di8erential equation is separable, the general solution having the form

ki(t) = Ci
√
t
√
(2 + �t)3 : (14)

The Ci integration constant can be determined from the initial conditions for node i.
Since node i joins the system at time ti, we have ki(ti) = b, leading to

ki(t) = b
√

t
ti

√(
2 + �t
2 + �ti

)3
: (15)

This implies that for large times (t → ∞) the connectivity of the node scales quadrat-
icly with time, i.e., k(t) ∼ t2.
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A quantity of major interest is the degree distribution, P(k). The nodes join the
system randomly at a constant rate, which implies that the ti values are uniformly
distributed in time between 0 and t. The distribution function for the ti in the [0; t]
interval is simply �(t) = 1=t. Using (15), P(k) can be obtained after determining the
ti(ki) dependence from (15), giving

P(k) =−�(t) dti
dki

∣∣∣∣
k

(16)

=
1
tk
S(k)(2 + �S(k))

2S(k) + 1
: (17)

We denoted by S(k) the function ti(ki = k), determined from (15), solving the fourth-
order polynomial equation

S(1 + �S)3 =
(
kc
k

)2
(18)

with

kc = b
√
t(2 + �t)3 : (19)

In the k�kc limit S�1 and we get

S(k) ≈ 1
�3

√
kc
k
: (20)

For k�kc on the other hand S�1, leading to

S(k) ≈
(
kc
k

)2
: (21)

Therefore, the scaling of P(k) is controlled by a time-dependent crossover connectivity
which is kc. For k�kc the degree distribution will scale as

P(k)˙ k−3=2 (22)

leading to the �= 3=2 exponent. For k�kc we get instead

P(k)˙ k−3 (23)

giving �=3. The crossover connectivity, kc, increases linearly in time for t�2=�, which
implies that in the asymptotic limit (t → ∞) only the �= 3=2 exponent is observable.

Note that this result predicts that the degree distribution has two scaling regimes,
one with � = 3=2 for small k, followed by a crossover to � = 3 for large k. This
crossover towards a larger exponent can be easily approximated with an exponential
cuto8, which is why we believe that in Ref. [10] the power law with an exponential
cuto8 gave a reasonable $t. However, as Ref. [11] and our results show, for datasets
with better statistics the two scaling regimes can be distinguished. Indeed, the crossover
is visible in Fig. 2 as well, in particular for the degree distribution of NS. The degree
distribution taken in 1993 has a clear � = 3 tail, as for the studied short time-frame
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Fig. 10. Scaling of �(k) (a) and of �(k) (b) for the NS database, demonstrating the trends in the small and
large k behavior of the degree distribution (see text).

(3 years) kc is expected to be low. This �=3 tail all but disappears, however, in 1998,
being replaced with a �=3=2 exponent, as predicted by (22) for the limit t → ∞. The
M database shows similar characteristics, albeit the crossover is masked by a higher
spread in the data point thanks to the weaker statistics.
Plotting instead of P(k) two di8erently cumulated values, the � = 3=2 and � = 3

scaling regimes becomes more evident. Let us denote by F(k) the primitive function
of P(k), de$ning

�(k) =−F(1)−
∫ k

1
P(k ′) dk ′ : (24)

�(k) can be determined numerically by integrating P(k) between 1 and k and sub-
tracting the constant at which the integral converges. For small k the function �(k)
should scale as

�(k)˙ k−1=2 (25)

assuming that P(k) scales as given by (22). As Fig. 10a shows, we indeed $nd that
for large t (1998) the measured �(k) function tends to approach the k−1=2 behavior,
which is less apparent on the small t curves (1993 and 1995).
To investigate the large k behavior of P(k), we measured the �(k) function de$ned

as

�(k) =
∫ ∞

k
P(k ′) dk ′ ; (26)

which captures the scaling of the tail. According to (23) for large k and small t one
should observe

�(k)˙ k−2 : (27)
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As Fig. 10 shows, we indeed $nd that for NS at small t (1993) the large k scaling
follows the prediction (26), and, as predicted, the scaling increasingly deviates from it
as time increases.

5. Monte Carlo simulations

While the continuum theory discussed in the previous section predicts the connec-
tivity distribution in agreement with the empirical data, there are other quantities, such
as the node separation and clustering coeJcient, that cannot be calculated using this
method at this point. To investigate the behavior of these measures of the network
topology next we study the model proposed in Section 3.6 using Monte Carlo simula-
tions.
Due to memory and computing time limitations we investigated relatively small

networks, with total number of nodes N ¡ 4000. While these networks are consid-
erably smaller than the real networks, their scaling and topological features should
be representative. In order to form a reasonable number of internal links, we in-
creased the parameter a in Eq. (6). For comparison purposes we note that in the
real system we have aM =0:31=(year) � 10−4=simulation step and aNS =0:98=(year) �
3:684 × 10−5=simulation step, numbers that can be derived from the data shown in
Figs. 6 and 1b.
The advantage of the modeling e8orts, including the Monte Carlo simulations, is that

they reproduce the network dynamics from the very $rst node. In contrast, the database
we studied records nodes and links only after 1991, when much of the networks struc-
ture was already in place. By collecting data over several years we gradually discovered
the underlying structure. We expect that after a quite long measurement time the struc-
ture revealed by the collected data will be statistically indistinguishable from the full
collaboration network. However, the dynamics we measure during this process for the
relevant quantities (diameter, average connectivity, clustering coeJcient) might di8er
from those characterizing the full network, since all of them are computed on the in-
complete network (revealed by the available data). However, Monte Carlo simulations
allow us to investigate the e8ect of the data incompleteness on the relevant network
measures.
We investigated the time dependence of the average connectivity, the diameter and

the clustering coeJcient, using the parameters Nmax = 1000, a = 0:001, � = 1 and
b=2. In order to increase the statistics, the results were averaged over 10 independent
con$gurations.
Average degree: As Fig. 11 indicates, asymptotically the average connectivity

increases linearly, in agreement with both our measurements (see Fig. 6) and the
continuum theory (see Eq. (5)).
Average separation: The empirical results indicated (see Fig. 3) that the average

separation decreases with time for both databases. In contrast, our simulations show a
monotonically increasing d, in apparent disagreement with the real system.
Note that an increasing diameter agrees with measurements done on other mod-

els, including scale-free and exponential networks, that all predict an approximately
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Fig. 11. Computer simulated dynamics of the average connectivity in the proposed model (Nmax = 1000,
a = 0:001, � = 1 and b = 2).

logarithmic increase with the number of nodes, d ˙ ln(N ) [28,32]. This contradic-
tion between the models and our empirical data is rooted in the incomplete data we
have for the $rst years of our measurements. To show this we perform the following
simulation. We construct a network of N = 1000 nodes. However, we will record the
apparent diameter of the network made of nodes that have been added only after a
prede$ned time, mimicking the fact that the data available for us gives d only for
publications after 1991. We $nd that the separation of this incomplete network has a
decreasing tendency, slowly converging to the real value (Fig. 12), in agreement with
the decrease observed in the empirical measurements (Fig. 3). This result underlies the
importance of simulations in understanding the dynamics of complex networks, and
resolves the conGict between the simulation and the empirical data. It also indicates
that most likely the diameter of the M and NS database does increase in time, but
such increase can be observed only if much longer time intervals will be available for
study.
Clustering coe9cient. The clustering coeJcient predicted by our simulations is

shown on Fig. 13. As the $gure indicates, C depends strongly on the value of the
parameter a. For a= 0 we have essentially the scale-free model [3] and the clustering
coeJcient has a monotonically decreasing tendency. For a¿ 0 however, the clustering
coeJcient decreases at the beginning and after reaching a minimum at Nmin changes
its course, asymptotically increasing with time. Thus, for all a¿ 0, we expect that in
the asymptotic limit the clustering coeJcient should increase, in agreement with our
measurements on the collaboration network (see Fig. 4). The Nmin position where the
clustering coeJcient has a minimum scales as power of the a parameter, as shown as
the inset in Fig. 13.
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Fig. 12. Computer simulated dynamics for the real and apparently measured diameter value (Nmax = 1000,
a = 0:001, � = 1, b = 2 and Ns = 200).

Fig. 13. Clustering coeJcient for di8erent values of the a parameter as a function of the system size N .
(Nmax = 1000, �=1 and b=2, values of a are 0 (•), 0.00025 (+), 0.0005 (N), 0.00075 (∗), 0.002 (H).)
The inset shows the scaling of the Nmin value as a function of the a parameter. (Nmax = 1000, � = 1 and
b = 2, the line shows a $t lnNmin =−1:887− 1:144 ln a.)
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Fig. 14. Connectivity distributions as predicted by numerical simulation for di8erent stages of evolution of
the network (a = 0:001, � = 1 and b = 2).

We conclude thus that the decreasing C observed for our database, shown in Fig. 4,
does not represent the asymptotic behavior. The observed behavior also indicates that
one should view the values for C reported in the literature, and measured for $nite
time-frames (maximum 5 years) with caution, as they might not represent asymptotic
values.
Degree distribution: The simulations provide P(k) as well, allowing us to check the

validity of the predictions of the continuum theory. Although the considered system
sizes are rather small (Nmax = 3500) compared to the N → ∞ approximation used
in the analytical calculation and the NM = 70; 975, NNS = 209; 750 for the empirical
data, the behavior of P(k), shown in Fig. 14 agrees with our continuum model and
measurements. For small k we observe the � = 1:5 scaling, while for large k P(k)
converges to the predicted �= 3 exponent.

6. Nonlinear e!ects

An issue that remained unresolved up to this point concerns the e8ect of the nonlinear
preferential attachment. We have seen in Section 3.6 that for the incoming links we
have

�i = b
k�i∑
j k

�
j

(28)

with � ≈ 0:8. On the other hand, for such preferential attachment Krapivsky et al.
have shown that the degree distribution follows a stretched exponential, i.e., the power
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law is absent [8]. This would indicate that P(k) for the co-authorship network should
follow a stretched exponential, which disagrees with our and Newman’s $ndings (we
have explicitly checked that a stretched exponential is not a good $t for our data).
What could then override the known e8ect of the �¡ 1 nonlinear behavior? Next we
propose a possible explanation: the linearity of the internal preferential attachment can
restore the power-law nature of P(k).
For non-integer � values the di8erential equation (8) governing the evolution

of the connectivity is not analytically solvable. However, in the extreme case � = 0
(no preferential attachment for new nodes) the equation is again analytically tractable.
Eq. (8) in this case has the form

dki
dt

=
b�
N (t)

+ 2N (t)a
∑
j

kikj∑
s;m kskm

: (29)

Using N (t) = �t and 〈k〉= at + 2b, which are valid in this case as well, following the
steps described in Section 4, we obtain the di8erential equation:

dki
dt

=
b
t
+

2aki
at + 2b

: (30)

The general solution of this equation has the form:

ki(t) = (2b+ at)2Ci +
2b+ at

4b

[
2b+ (2b+ at) ln

(
t

2b+ at

)]
; (31)

where Ci is an integration constant which can be determined using the ki(ti)= b initial
condition. The degree distribution cannot be determined analytically, since the ti(ki)
function is not analytical. However, taking the {t; ti} → ∞ limit, i.e., focusing on the
network’s long time evolution we obtain

ki(t) ≈ b
(
t
ti

)2
; (32)

which again predicts a power-law degree distribution

P(k)˙ k−3=2 : (33)

Consequently, we obtain that in the asymptotic limit for � = 0 the scale-free degree
distribution has the same tail as we obtained for � = 1. This result suggests that the
linearity in the internal preferential attachment determines the asymptotic form of the
degree distribution. The real exponent �=0:8 is between the two asymptotically solvable
cases �=0 and 1, but, based on the limiting behavior of the two extremes we expect that
independently of the value of 06 �6 1, in the asymptotic limit the degree distribution
should converge to a power law with � = 3=2. On the other hand, we expect that
the nonlinear � �=1 behavior would have a considerable e8ect on the non-asymptotic
behavior, which is not accessible analytically at this point.
To test further the potential e8ect of the nonlinearities, we have simulated the model

discussed in Section 5 with � = 0:75, otherwise all parameters being unchanged. We
show on Fig. 15 the degree distribution for the linear (�=1) and the nonlinear (�=0:75)
case. As one can see, the � = 1 and 0.75 case can be hardly distinguished. This
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Fig. 15. Connectivity distribution generated by the numerical simulations for linear (� = 1) and nonlinear
(� = 0:75) preferential attachment (Nmax = 3500, a = 0:0005, � = 1 and b = 2).

could have two origins. First, the simulations are limited to t = 3500 simulation steps,
due to the discussed running time limitations. Thus we are hardly in the asymptotic
regime. On the other hand, the agreement indicates that the nonlinear e8ect has no
distinguishable e8ect on P(k), again the internal attachment dominating the system
behavior.
In summary, the domination of the internal attachment a8ects are expected to be

even more dominant for the real network. Indeed, in the collaboration network the
fraction of the links created as internal links is much higher than those created by
the incoming nodes, as an author quali$es for a new incoming link only on his $rst
paper. Most scientists contribute for a considerable time to the same $led, publishing
numerous subsequent papers, and these later links will all appear as internal links.
Thus, typically the number of internal links is much higher than the number of new
links, the network’s topology is much more driven by the internal links then by the
external ones. This is one possible reason why the e8ect of the nonlinear behavior,
while clearly present, cannot be detected in the functional form of P(k).

7. Discussion

In the last 2 years we witnessed considerable advances in addressing the topology
and the dynamics of complex networks. Along this road a number of quantities have
been measured and calculated, aiming to characterize the network topology. However,
most of these studies are fragmented, focusing on one or a few characteristics of
the network at a time. Here, we presented a detailed study of a network of high



612 A.L. Barab*asi et al. / Physica A 311 (2002) 590–614

interest to the scienti$c community, the collaboration network of scientists, which also
represents a prototype example of a complex evolving network. This study allows us
to investigate to which degree can we use various known measures to characterize a
given network. A $rst and important result of our investigation is that we need to
be careful at distinguishing between the asymptotic and the intermediate behavior. In
particular, most quantities used to characterize the network are time dependent. For
example, the diameter, the clustering coeJcient, as well as the average degree of the
nodes are often used as basic time-independent network characteristics. Our empirical
results show that many of these key quantities are time dependent, without a tendency
to saturate within the available time-frame. Thus their value at a given moment tells
us little about the network. They can be used, however, at any moment, to show that
the network has small world properties, i.e., it has a small average separation, and a
clustering coeJcient that is larger than one expected for a random network.
A quantity that is often believed to o8er a stationary measure of the network is the

degree distribution. Our empirical data, together with the analytic solution of the model
show that this is true only asymptotically for the co-authorship network; we uncover a
crossover behavior between two di8erent scaling regimes. We tend to believe that the
model’s predictions are not limited to the collaboration network; as on the WWW and
for the actor collaboration network similar basic processes take place, chances are that
similar crossovers could appear there as well.
A third important conclusion of the study regards the understanding that the mea-

surements done on incomplete databases could o8er trends that are opposite compared
to that seen in the full system. An example is the node separation; we $nd that the em-
pirically observed decreasing tendency is an artifact of the incomplete data. However,
our simulations show that one can, with careful modeling, uncover such inconsisten-
cies. But this also o8ers an important warning; for any network, before attempting to
model it, we need to fully understand the limitations of the data collection process,
and test their e8ect on the quantities of interest for us.
The model presented here represents only the starting point toward a complete mod-

eling of collaborations in science. As we discussed throughout the paper, we have
made several important approximations, sacri$cing certain known network features for
an analytical solution. For example, we neglected in our modeling e8ort the poten-
tial e8ect of aging [6,12], reGecting the fact that scientists retire and stop publishing
papers. In the long run such aging e8ects will, undoubtedly, introduce exponential cut-
o8s in P(k), as there are inherent limits on how many papers a researcher can write.
Those e8ects, however, are not visible in our datasets. There are several potential rea-
sons for this. Probably, the most important is that even the 8 years available to us
for study is much shorter than the professional life of a scientist. Such aging induced
cuto8s are expected to be visible only when time-frames of length of several time the
scientist’s professional life are studied. Data availability so far does not permit such
studies.
A second simpli$cation is that we assumed that each paper has exactly m authors.

That is far from being so, as the numbers of co-authors varies greatly between papers.
However, it is hard to imagine that the inclusion of a stochastic component in m
would fundamentally a8ect our results. It is clear that such stochastic component will
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not a8ect P(k), and we feel that the e8ect on d or C is also negligible, but we lack
at this point results to support this latter claim.
A surprising result of our study is the power-law character of P(k), despite the fact

that �(k) is nonlinear. We have shown that the existence of a linear internal attachment
rule is able to restore the power law P(k). Considering the fact that the largest fraction
of links appear as internal links, compared with links created by new authors, it is fair
to expect that the scaling determined by this internal linking process will dominate.
The fact that for the two limits of the internal linking exponents, �= 0 and �= 1, we
obtained power law P(k) despite the nonlinear external �(k), suggests that such power
law might appear for nonlinear, � �=0; 1 internal �(k) as well. Solving this problem is
a formidable challenge, but it is perhaps worth the e8ort.
Finally, a more detailed modeling of the co-authorship network would involve the

construction of bipartite graphs [33], in which we directly simulate the publishing
of papers by several co-authors, which are all connected to each other. In such a
model the basic unit is a paper, that involves several “old” and “new” authors. In
such a framework one can simultaneously study the evolution of the co-authorship
network (in which nodes are scientists linked by joint publications) and the publication
network (in which nodes are papers, linked by joint authors). One can imagine that
coupled continuum equations could be formulated for such bipartite network as well,
which would eventually predict the network’s dynamics and topology. Undoubtedly,
including such detail in the modeling e8ort would increase the $delity of the model.
While challenging, following such path is beyond our goals here.
In summary, the modeling e8orts presented here are only the starting point for a

systematic investigation of the evolution of social networks. It is important to note that
such modeling is open ended: more details can be incorporated, that could undoubtedly
improve the agreement between the empirical data and theory. And such improvements
might not be in vain; they could point towards a better understanding of the evolution
of not only the co-authorship graph, but complex networks in general.
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