
Graph, Algorithms, and Models

Andrea Civilini, Xinyi Xu, and Sam Creedon

Whenever

Overview

What is a Community?
Intuitive Definition
Generalisations and Variations
Why study Communities

Modularity
Modularity
Checking all Partitions of a Graph

Algorithms for finding Communities
Girvan-Newman Method
WalkTrap
Modularity Optimization
The Label Propagation algorithm

Validation of Community finding Algorithms
Benchmark Networks

Intuitive Definition

I Intuitively, given a graph G = (V ,E), we say that G has a
community structure if V can be partitioned into subsets
called communities, say {C1,C2, . . . ,Ck}, where the nodes of
a given community Ci are more densely connected to one
another than to the nodes in other communities.

I Of course such a definition is open to interpretation, especially
when trying to express it in a more rigours manner. As such
there is no universal definition of a community, but many
interpretations share common features.

I An important class of motivating examples of networks with
community structure are those of social networks, where many
natural communities would arise due to location, hobbies,
occupation, etc.

Generalisations and Variations

I There are many generalisations and related concepts in the
research of communities in networks:
I Communities in weighted or directed graphs
I Overlapping communities
I Hierarchical community structure
I Evolution of community structure over time

I Our main focus will be on undirected graphs with no weighted
edges. Also the community structure we will be examining will
be focused on partitions of the vertices.

Why study Communities

First and foremost, the importance of studying networks is made
clear due to their large use in numerous disciplines, ranging from
natural and social sciences, to computer sciences and engineering.
Community structure appears in many networks throughout such
disciplines, and is certainly a large feature in many real world
networks. As such the topic of communities has seen significant
interest in recent times. Understanding the underlying
communities which make up a network allows us to:

I Gain a better picture of the entire network as a whole

I Obtain local data on how the network operates

I Identify communities with properties which strongly differ
from the average properties of the network.

Modularity

I Suppose we have a potential grouping of a network into
communities, say P = {C1,C2, . . . ,Ck}.

I A quality function is an assignment of such a partition to a
numerical value, with the intention of describing whether such
a partition is a good fit for grouping the network into
communities.

I The most popular quality function is called Modularity. It is
defined by

QP =
1

2K

N∑
i=1

N∑
j=1

(
aij −

kikj
2K

)
δ(Ci ,Cj).

I Here aij are the elements of the adjacency matrix, ki is the
degree of node i , and δ is the Kronecker delta function.

Modularity

I What the Modularity function is doing, is evaluating the
difference between the internal density of each community
with the expected density within a random network.

I The random network most commonly used, and the one used
to derive the previous formula, is a network where nodes are
connected uniformly at random, but we have the same
number of nodes as the original network, and where each
node has exactly the same degree as the original network.

I In a sense, Modularity is comparable to statistic significant
testing, as it gives us a measure on how different the internal
density of the communities are compared to how they are in a
random graph which retains some fundamental structure of
the original network. As such positive modularity suggests a
“good” partition, and the higher the better.

Checking all Partitions of a Graph

I A natural question now is how one would go about finding a
partition of a network into communities.

I Simply calculating all partitions of the vertices of a network is
highly impractical.

I The number of partitions of a set of size n is given by Bn, the
nth Bell number. From some combinatorial arguments one
can show the following:

Bn =
n−1∑
k=1

(
n − 1
k

)
Bk ≥

n−1∑
k=1

(
n − 1
k

)
= 2n−1.

I This highlights the fact that Bn has 2n as an asymptotic lower
bound, i.e. Bn grows at best in exponential time, which is
very “costly” in terms of computation. In particular,
enumerating all partitions of a set of vertices of a network is
practically impossible with the few exceptions when the
network has a very low node count.

Girvan-Newman Method

I The Girvan-Newman algorithm was one of the first algorithms
created to find community structure within a network.

I It is based on the idea that the edges between communities are
sparse, and hence many shortest paths between nodes within
the network have a higher chance of passing through these
“bridges” between the communities. So if one could find such
edges and remove them, we would separate the communities
into connected components, allow us to identify them.

Girvan-Newman Method

I To find such edges, we assign a value to each edge referred to
as the betweenness of the edge. It is the number obtained by
dividing the number of shortest paths passing through the
given edge by the total number of shortest paths.

I The edge betweenness gives us a measure of the importance
of the edge in traversing the network. As such, we expect the
few edges which connect the communities together to have
high betweenness.

I The Girvan-Newman algorithm is then given as follows:

(1) Evaluate the betweenness of each edge in the network
(2) Remove the edge of maximal betweenness (chosen arbitrarily if

draws occur)
(3) Re-evaluate the edge betweenness of each edge in the new

network obtained from the above step
(4) Repeat steps 2 and 3 above until no more edges remain

Girvan-Newman Method

I The connected components making up the graphs obtained in
the above process give us a collection of potential partitions
of the original network into communities (in fact a
dendrogram). Using modularity one can find the best
candidate out of the collection.

I Remarks:
I Has a rather high time complexity of O(K 2N log(N)) where

N = |V | and K = |E |.
I Has natural generalisations to directed graphs
I Not as easy to generalise to covers (“overlapping partitions”),

but there do exist such modified versions
I Since we obtain a dendrogram, we obtain hierarchical

knowledge on the community structure.

WalkTrap

I There are numerous algorithms which employ random walks
on a network as a means of finding communities. We give a
very brief and intuitive summary of such an algorithm called
WalkTrap.

I Undergoing a random walk in a network, one would expect to
be trapped (spend a lot of time) within densely connected
areas, i.e. communities. So the idea behind WalkTrap is to
try and exploit this behaviour of random walks as a way of
identifying what collection of nodes are likely to be members
of the same community.

I An important ingredient in this algorithm is the transition
matrix P, whose ij-th entry gives the probability of travelling
from node i to j in a single step. Then for some length t, the
matrix Pt describes the probabilities of going from one node
to another in t steps.

WalkTrap

I A length of the random walks, t, is fixed. Then one uses
(skipping the details) the matrix Pt to define a distance
among the nodes of the network. The idea is that nodes of
the same community are considered “close”, while nodes of
distinct communities are considered “far away”. The notion of
distance can be generalised to subsets of nodes.

I Then the WalkTrap algorithm is intuitively given as follows:
Start with the finest partition P1 = {{v}|v ∈ V }. Compute
the distances between all adjacent nodes. Then this partition
evolves by repeating the following operations. At each step k:
I Choose the two communities C1 and C2 of Pk whom uphold

some minimality condition based on the distance function.
I Merge these two communities into a new community

C3 = C1 ∪ C2 and create the new partition
Pk+1 = (Pk\{C1,C2}) ∪ C3

I Update the distances between the communities and repeat

WalkTrap
I Just like with the Girvan-Newman algorithm, we obtain a

collection of partitions of the network which form a
dendrogram. We start with the finest partition into singletons,
and end with the partition containing a single community
containing all nodes. The partitions obtained along the way
have been chosen in a greedy fashion, trying to minimise some
distance condition between the communities.

I Using modularity one can find the best candidate out of the
collection, or even a stopping point of the dendrogram.

I Remarks:
I At worst it’s time complexity is O(KN2). For sparse networks

this can be improved to O(N2log(N)).
I Hierarchical community structure obtained via the dendrogram
I Can be directly usable for weighted networks
I Surprising much of the proofs and computations are not

upheld in the case of directed graphs
I If the graph is very large, instead of computing P t directly, one

can obtain an approximation by sampling many random walks
on the graph.

Modularity Optimization

I As seen in the previous examples, we use modularity as a
means to pick out the best partition from a collection. This is
often done for algorithms which find community structure,
since modularity is a very popular concept within this field of
study.

I One might suggest to make an algorithm with the objective of
maximising modularity from the get-go. This is the goal of
Modularity Optimization algorithms. There are many such
algorithms, but one of the most popular ones is given by
Newman, which is simply the greedy algorithm employed in a
natural fashion.

Modularity Optimization

I We start with finest partition P1 = {{v}|v ∈ V }. We obtain
a series of partitions by, at a given stage k with partition Pk ,
we obtain a new partition by:

(1) Evaluate the modularity of all partitions obtainable from Pk by
merging a pair of communities

(2) Let the new partition Pk+1 be the one of maximal modularity
from the partitions of (1) above

(3) Repeat until we have P = V (at stage n − 1)

I Remarks:
I With the use of clever data structures to maintain and update

the information regarding merging and modularity increases,
the time complexity is O(K log2N).

I Since modularity can be generalised to both directed and
weighted graphs, so can this algorithm.

I Hierarchical community structure obtained via the dendrogram

The Label Propagation algorithm

I The Label Propagation algorithm is a community finding
algorithm. It works by propagating labels throughout the
network and forming communities based on this process of
label propagation.

I The idea behind the algorithm is that a single label can quickly
become dominant in a densely connected area, but will have
trouble crossing a sparsely connected region. Labels will get
trapped inside a densely connected group of nodes, and those
nodes that end up with the same label when the algorithms
finish can be considered part of the same community.

I The algorithm goes as follows:

(1) Give every node a distinct label
(2) At every iteration of propagation labels, each node updates its

label to the one that is most popular with its neighbours
(draws are broken uniformly at randomly).

(3) The process terminates when each node has the majority label
of its neighbours.

The Label Propagation algorithm

I As labels move around, densely connected areas of nodes
quickly reach a consensus on a unique label. At the end of the
algorithm nodes that have the same label at are said to
belong to the same community.

I Remarks:
I The algorithm can be semi-supervised by pre-assigning nodes

labels. This gives great flexibility in its use.
I The time complexity is O(EK log(N)), where E is the number

of iterations of the process.
I May get trapped in loops, but there are means to remedy this

issue.

Benchmark Networks

I The algorithms we have discussed are constructed with
fundamental intuitive properties of what it means to be a
community in mind. As such we expect that these algorithms
would serve well in finding community structure in networks
when they are present. However we have not yet mentioned
whether the algorithms are indeed good at their job.

I The main reason for this is that, at the moment, there is no
known best way of validating an algorithm for finding
communities. This mainly comes down to the fact that there
is no unifying definition of community.

I So the most popular way of testing out an algorithm and
comparing it to others it by running it on benchmark networks
whose underlying community structure is known, and
comparing the known structure to the one obtained by the
algorithm.

Benchmark Networks

I There are both computer-generated benchmark networks and
real-world ones. The most used benchmark networks range
the community structure in precise ways to try an isolate
certain difficulties and aspect one would want a community
finding algorithm to over come if it is to be considered good.

I Many popular benchmark models are inspired by what is
called the Stochastic Block Models. The idea is we pre-group
the nodes, and assign an edge to two given nodes with
probability depending on what groups the nodes belong. A
simple case would be to have two probabilities, pin for pairs of
nodes within the same group, and pout for pairs of nodes of
distinct group, and having pin > pout .

I Such a random graph would thus be built with a community
structure in mind, and the greater the difference between pin
and pout , the easier we would expect the communities to be
detectable.

Benchmark Networks

I Ranging the size of the groupings (possibly of different sizes),
and changing various values for the probability of edges
between different groups, would give scores of potential
benchmark networks to work with.

I Many of the popular computer-generated benchmarks are
special cases of the above random graph construction.

	What is a Community?
	Intuitive Definition
	Generalisations and Variations
	Why study Communities

	Modularity
	Modularity
	Checking all Partitions of a Graph

	Algorithms for finding Communities
	Girvan-Newman Method
	WalkTrap
	Modularity Optimization
	The Label Propagation algorithm

	Validation of Community finding Algorithms
	Benchmark Networks

