NetBunch
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
NetBunch/doc/bb_fitness.1.html

169 lines
6.6 KiB

<!DOCTYPE html>
<html>
<head>
<meta http-equiv='content-type' value='text/html;charset=utf8'>
<meta name='generator' value='Ronn/v0.7.3 (http://github.com/rtomayko/ronn/tree/0.7.3)'>
<title>bb_fitness(1) - Grow a random graph with the fitness model</title>
<style type='text/css' media='all'>
/* style: man */
body#manpage {margin:0}
.mp {max-width:100ex;padding:0 9ex 1ex 4ex}
.mp p,.mp pre,.mp ul,.mp ol,.mp dl {margin:0 0 20px 0}
.mp h2 {margin:10px 0 0 0}
.mp > p,.mp > pre,.mp > ul,.mp > ol,.mp > dl {margin-left:8ex}
.mp h3 {margin:0 0 0 4ex}
.mp dt {margin:0;clear:left}
.mp dt.flush {float:left;width:8ex}
.mp dd {margin:0 0 0 9ex}
.mp h1,.mp h2,.mp h3,.mp h4 {clear:left}
.mp pre {margin-bottom:20px}
.mp pre+h2,.mp pre+h3 {margin-top:22px}
.mp h2+pre,.mp h3+pre {margin-top:5px}
.mp img {display:block;margin:auto}
.mp h1.man-title {display:none}
.mp,.mp code,.mp pre,.mp tt,.mp kbd,.mp samp,.mp h3,.mp h4 {font-family:monospace;font-size:14px;line-height:1.42857142857143}
.mp h2 {font-size:16px;line-height:1.25}
.mp h1 {font-size:20px;line-height:2}
.mp {text-align:justify;background:#fff}
.mp,.mp code,.mp pre,.mp pre code,.mp tt,.mp kbd,.mp samp {color:#131211}
.mp h1,.mp h2,.mp h3,.mp h4 {color:#030201}
.mp u {text-decoration:underline}
.mp code,.mp strong,.mp b {font-weight:bold;color:#131211}
.mp em,.mp var {font-style:italic;color:#232221;text-decoration:none}
.mp a,.mp a:link,.mp a:hover,.mp a code,.mp a pre,.mp a tt,.mp a kbd,.mp a samp {color:#0000ff}
.mp b.man-ref {font-weight:normal;color:#434241}
.mp pre {padding:0 4ex}
.mp pre code {font-weight:normal;color:#434241}
.mp h2+pre,h3+pre {padding-left:0}
ol.man-decor,ol.man-decor li {margin:3px 0 10px 0;padding:0;float:left;width:33%;list-style-type:none;text-transform:uppercase;color:#999;letter-spacing:1px}
ol.man-decor {width:100%}
ol.man-decor li.tl {text-align:left}
ol.man-decor li.tc {text-align:center;letter-spacing:4px}
ol.man-decor li.tr {text-align:right;float:right}
</style>
<style type='text/css' media='all'>
/* style: toc */
.man-navigation {display:block !important;position:fixed;top:0;left:113ex;height:100%;width:100%;padding:48px 0 0 0;border-left:1px solid #dbdbdb;background:#eee}
.man-navigation a,.man-navigation a:hover,.man-navigation a:link,.man-navigation a:visited {display:block;margin:0;padding:5px 2px 5px 30px;color:#999;text-decoration:none}
.man-navigation a:hover {color:#111;text-decoration:underline}
</style>
</head>
<!--
The following styles are deprecated and will be removed at some point:
div#man, div#man ol.man, div#man ol.head, div#man ol.man.
The .man-page, .man-decor, .man-head, .man-foot, .man-title, and
.man-navigation should be used instead.
-->
<body id='manpage'>
<div class='mp' id='man'>
<div class='man-navigation' style='display:none'>
<a href="#NAME">NAME</a>
<a href="#SYNOPSIS">SYNOPSIS</a>
<a href="#DESCRIPTION">DESCRIPTION</a>
<a href="#PARAMETERS">PARAMETERS</a>
<a href="#OUTPUT">OUTPUT</a>
<a href="#EXAMPLES">EXAMPLES</a>
<a href="#SEE-ALSO">SEE ALSO</a>
<a href="#REFERENCES">REFERENCES</a>
<a href="#AUTHORS">AUTHORS</a>
</div>
<ol class='man-decor man-head man head'>
<li class='tl'>bb_fitness(1)</li>
<li class='tc'>www.complex-networks.net</li>
<li class='tr'>bb_fitness(1)</li>
</ol>
<h2 id="NAME">NAME</h2>
<p class="man-name">
<code>bb_fitness</code> - <span class="man-whatis">Grow a random graph with the fitness model</span>
</p>
<h2 id="SYNOPSIS">SYNOPSIS</h2>
<p><code>bb_fitness</code> <var>N</var> <var>m</var> <var>n0</var> [SHOW]</p>
<h2 id="DESCRIPTION">DESCRIPTION</h2>
<p><code>bb_fitness</code> grows an undirected random scale-free graph with <var>N</var>
nodes using the fitness model proposed by Bianconi and Barabasi. The
initial network is a clique of <var>n0</var> nodes, and each new node creates
<var>m</var> new edges. The probability that a new node create an edge to node
<code>j</code> is proportional to</p>
<pre><code> a_j * k_j
</code></pre>
<p>where <code>a_j</code> is the attractiveness (fitness) of node <code>j</code>. The values of
node attractiveness are sampled uniformly in the interval [0,1].</p>
<h2 id="PARAMETERS">PARAMETERS</h2>
<dl>
<dt class="flush"><var>N</var></dt><dd><p> Number of nodes of the final graph.</p></dd>
<dt class="flush"><var>m</var></dt><dd><p> Number of edges created by each new node.</p></dd>
<dt class="flush"><var>n0</var></dt><dd><p> Number of nodes in the initial (seed) graph.</p></dd>
<dt class="flush">SHOW</dt><dd><p> If the fourth parameter is equal to <code>SHOW</code>, the values of node
attractiveness are printed on STDERR.</p></dd>
</dl>
<h2 id="OUTPUT">OUTPUT</h2>
<p><code>bb_fitness</code> prints on STDOUT the edge list of the final graph.</p>
<h2 id="EXAMPLES">EXAMPLES</h2>
<p>The following command:</p>
<pre><code> $ bb_fitness 10000 3 4 &gt; bb_fitness_10000_3_4.txt
</code></pre>
<p>uses the fitness model to create a random graph with <var>N=10000</var> nodes,
where each new node creates <var>m=3</var> new edges and the initial seed
network is a ring of <var>n0=5</var> nodes. The edge list of the resulting
graph is saved in the file <code>bb_fitness_10000_3_4.txt</code> (notice the
redirection operator <code>&gt;</code>). The command:</p>
<pre><code> $ bb_fitness 10000 3 4 SHOW &gt; bb_fitness_10000_3_4.txt 2&gt; bb_fitness_10000_3_4.txt_fitness
</code></pre>
<p>will do the same as above, but it will additionally save the values of
node fitness in the file <code>bb_fitness_10000_3_4.txt_fitness</code> (notice
the redirection operator <code>2&gt;</code>, that redirects the STDERR to the
specified file).</p>
<h2 id="SEE-ALSO">SEE ALSO</h2>
<p><span class="man-ref">ba<span class="s">(1)</span></span>, <span class="man-ref">dms<span class="s">(1)</span></span></p>
<h2 id="REFERENCES">REFERENCES</h2>
<ul>
<li><p>G. Bianconi, A.-L. Barabasi, " Competition and multiscaling in
evolving networks". EPL-Europhys. Lett. 54 (2001), 436.</p></li>
<li><p>V. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
Methods and Applications", Chapter 6, Cambridge University Press
(2017)</p></li>
<li><p>V. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
Methods and Applications", Appendix 13, Cambridge University Press
(2017)</p></li>
</ul>
<h2 id="AUTHORS">AUTHORS</h2>
<p>(c) Vincenzo 'KatolaZ' Nicosia 2009-2017 <code>&lt;v.nicosia@qmul.ac.uk&gt;</code>.</p>
<ol class='man-decor man-foot man foot'>
<li class='tl'>www.complex-networks.net</li>
<li class='tc'>September 2017</li>
<li class='tr'>bb_fitness(1)</li>
</ol>
</div>
</body>
</html>