NetBunch
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
NetBunch/doc/knn.1.html

239 lines
8.4 KiB

<!DOCTYPE html>
<html>
<head>
<meta http-equiv='content-type' value='text/html;charset=utf8'>
<meta name='generator' value='Ronn/v0.7.3 (http://github.com/rtomayko/ronn/tree/0.7.3)'>
<title>knn(1) - Compute the average nearest neighbours degree function</title>
<style type='text/css' media='all'>
/* style: man */
body#manpage {margin:0}
.mp {max-width:100ex;padding:0 9ex 1ex 4ex}
.mp p,.mp pre,.mp ul,.mp ol,.mp dl {margin:0 0 20px 0}
.mp h2 {margin:10px 0 0 0}
.mp > p,.mp > pre,.mp > ul,.mp > ol,.mp > dl {margin-left:8ex}
.mp h3 {margin:0 0 0 4ex}
.mp dt {margin:0;clear:left}
.mp dt.flush {float:left;width:8ex}
.mp dd {margin:0 0 0 9ex}
.mp h1,.mp h2,.mp h3,.mp h4 {clear:left}
.mp pre {margin-bottom:20px}
.mp pre+h2,.mp pre+h3 {margin-top:22px}
.mp h2+pre,.mp h3+pre {margin-top:5px}
.mp img {display:block;margin:auto}
.mp h1.man-title {display:none}
.mp,.mp code,.mp pre,.mp tt,.mp kbd,.mp samp,.mp h3,.mp h4 {font-family:monospace;font-size:14px;line-height:1.42857142857143}
.mp h2 {font-size:16px;line-height:1.25}
.mp h1 {font-size:20px;line-height:2}
.mp {text-align:justify;background:#fff}
.mp,.mp code,.mp pre,.mp pre code,.mp tt,.mp kbd,.mp samp {color:#131211}
.mp h1,.mp h2,.mp h3,.mp h4 {color:#030201}
.mp u {text-decoration:underline}
.mp code,.mp strong,.mp b {font-weight:bold;color:#131211}
.mp em,.mp var {font-style:italic;color:#232221;text-decoration:none}
.mp a,.mp a:link,.mp a:hover,.mp a code,.mp a pre,.mp a tt,.mp a kbd,.mp a samp {color:#0000ff}
.mp b.man-ref {font-weight:normal;color:#434241}
.mp pre {padding:0 4ex}
.mp pre code {font-weight:normal;color:#434241}
.mp h2+pre,h3+pre {padding-left:0}
ol.man-decor,ol.man-decor li {margin:3px 0 10px 0;padding:0;float:left;width:33%;list-style-type:none;text-transform:uppercase;color:#999;letter-spacing:1px}
ol.man-decor {width:100%}
ol.man-decor li.tl {text-align:left}
ol.man-decor li.tc {text-align:center;letter-spacing:4px}
ol.man-decor li.tr {text-align:right;float:right}
</style>
<style type='text/css' media='all'>
/* style: toc */
.man-navigation {display:block !important;position:fixed;top:0;left:113ex;height:100%;width:100%;padding:48px 0 0 0;border-left:1px solid #dbdbdb;background:#eee}
.man-navigation a,.man-navigation a:hover,.man-navigation a:link,.man-navigation a:visited {display:block;margin:0;padding:5px 2px 5px 30px;color:#999;text-decoration:none}
.man-navigation a:hover {color:#111;text-decoration:underline}
</style>
</head>
<!--
The following styles are deprecated and will be removed at some point:
div#man, div#man ol.man, div#man ol.head, div#man ol.man.
The .man-page, .man-decor, .man-head, .man-foot, .man-title, and
.man-navigation should be used instead.
-->
<body id='manpage'>
<div class='mp' id='man'>
<div class='man-navigation' style='display:none'>
<a href="#NAME">NAME</a>
<a href="#SYNOPSIS">SYNOPSIS</a>
<a href="#DESCRIPTION">DESCRIPTION</a>
<a href="#PARAMETERS">PARAMETERS</a>
<a href="#OUTPUT">OUTPUT</a>
<a href="#EXAMPLES">EXAMPLES</a>
<a href="#SEE-ALSO">SEE ALSO</a>
<a href="#REFERENCES">REFERENCES</a>
<a href="#AUTHORS">AUTHORS</a>
</div>
<ol class='man-decor man-head man head'>
<li class='tl'>knn(1)</li>
<li class='tc'>www.complex-networks.net</li>
<li class='tr'>knn(1)</li>
</ol>
<h2 id="NAME">NAME</h2>
<p class="man-name">
<code>knn</code> - <span class="man-whatis">Compute the average nearest neighbours degree function</span>
</p>
<h2 id="SYNOPSIS">SYNOPSIS</h2>
<p><code>knn</code> <var>graph_in</var> [<var>NO|LIN|EXP</var> <var>bin_param</var>]</p>
<h2 id="DESCRIPTION">DESCRIPTION</h2>
<p><code>knn</code> computes the average nearest neighbours degree function knn(k)
of the graph <var>graph_in</var> given as input. The program can (optionally)
average the results over bins of equal or exponentially increasing
width (the latter is also known as logarithmic binning).</p>
<h2 id="PARAMETERS">PARAMETERS</h2>
<dl>
<dt><var>graph_in</var></dt><dd><p> undirected input graph (edge list). If is equal to <code>-</code> (dash), read
the edge list from STDIN.</p></dd>
<dt class="flush">NO</dt><dd><p> If the second (optional) parameter is equal to <code>NO</code>, or omitted,
the program will print on output the values of knn(k) for all the
degrees in <var>graph_in</var>.</p></dd>
<dt class="flush">LIN</dt><dd><p> If the second (optional) parameter is equal to <code>LIN</code>, the program
will average the values of knn(k) over <var>bin_param</var> bins of equal
length.</p></dd>
<dt class="flush">EXP</dt><dd><p> If the second (optional) parameter is equal to <code>EXP</code>, the progam
will average the values of knn(k) over bins of exponentially
increasing width (also known as 'logarithmic binning', which is
odd, since the width of subsequent bins increases exponentially,
not logarithmically, but there you go...). In this case,
<var>bin_param</var> is the exponent of the increase.</p></dd>
<dt><var>bin_param</var></dt><dd><p> If the second parameter is equal to <code>LIN</code>, <var>bin_param</var> is the
number of bins used in the linear binning. If the second parameter
is <code>EXP</code>, <var>bin_param</var> is the exponent used to determine the width
of each bin.</p></dd>
</dl>
<h2 id="OUTPUT">OUTPUT</h2>
<p>The output is in the form:</p>
<pre><code> k1 knn(k1)
k2 knn(k2)
....
</code></pre>
<p>If no binning is selected, <code>k1</code>, <code>k2</code>, etc. are the degrees observed
in <var>graph_in</var>. If linear or exponential binning is required, then
<code>k1</code>, <code>k2</code>, etc. are the right extremes of the corresponding bin.</p>
<h2 id="EXAMPLES">EXAMPLES</h2>
<p>To compute the average neanest-neighbours degree function for a given
graph we just run:</p>
<pre><code> $ knn er_1000_5000.net
2 10.5
3 11.333333
4 10.785714
5 11.255319
6 11.336601
7 11.176292
8 11.067568
9 11.093519
10 10.898438
11 10.906009
12 11.031353
13 10.73938
14 10.961538
15 10.730864
16 10.669118
17 10.702206
18 10.527778
19 11.302632
20 11.8
$
</code></pre>
<p>Since we have not requested a binning, the program will output the
value of knn(k) for each of the degrees actually observed in the graph
<code>er_1000_5000.net</code> (the mininum degree is 2 and the maximum degree is
20). Notice that in this case, as expected in a graph without
degree-degree correlations, the values of knn(k) are almost
independent of k.</p>
<p>We can also ask <code>knn</code> to bin the results over 5 bins of equal width by
running:</p>
<pre><code> $ knn er_1000_5000.net LIN 5
6 11.249206
10 11.037634
14 10.919366
18 10.68685
22 11.474138
$
</code></pre>
<p>Let us consider the case of <code>movie_actors.net</code>, i.e. the actors
collaboration network. Here we ask <code>knn</code> to compute the average
nearest-neighbours degrees using exponential binning:</p>
<pre><code> $ knn movie_actors.net EXP 1.4
2 142.56552
5 129.09559
9 158.44493
15 198.77922
23 205.96538
34 210.07379
50 227.57167
72 235.89857
102 254.47583
144 276.572
202 307.11004
283 337.83733
397 370.34222
556 410.89117
779 446.66331
1091 498.73118
1527 547.31923
2137 577.87852
2991 582.6855
4187 557.44801
$
</code></pre>
<p>Notice that, due to the presence of the second parameter <code>EXP</code>, the
program has printed on output knn(k) over bins of exponentially
increasing width, using an exponent <code>1.4</code>. This is useful for plotting
with log or semilog axes. In this case, the clear increasing trend of
knn(k) indicates the presence of assortative correlations.</p>
<h2 id="SEE-ALSO">SEE ALSO</h2>
<p><span class="man-ref">knn_w<span class="s">(1)</span></span>, <span class="man-ref">deg_seq<span class="s">(1)</span></span></p>
<h2 id="REFERENCES">REFERENCES</h2>
<ul>
<li>V. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
Methods and Applications", Chapter 7, Cambridge University Press
(2017)</li>
</ul>
<h2 id="AUTHORS">AUTHORS</h2>
<p>(c) Vincenzo 'KatolaZ' Nicosia 2009-2017 <code>&lt;v.nicosia@qmul.ac.uk&gt;</code>.</p>
<ol class='man-decor man-foot man foot'>
<li class='tl'>www.complex-networks.net</li>
<li class='tc'>September 2017</li>
<li class='tr'>knn(1)</li>
</ol>
</div>
</body>
</html>