You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
5.3 KiB
247 lines
5.3 KiB
/*
|
|
* This file is part of MAMMULT: Metrics And Models for Multilayer Networks
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or (at
|
|
* your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include "utils.h"
|
|
|
|
|
|
int main(int argc, char *argv[]){
|
|
|
|
|
|
if (argc < 6){
|
|
printf("Usage: %s <layer1> <layer2> <overlapping network> <N nodes> <b1> <b2>\n", argv[0]);
|
|
exit(1);
|
|
}
|
|
|
|
|
|
/*dichiarazioni enzo*/
|
|
FILE *filein0,*filein1, *filein, *fileout;
|
|
unsigned int N0, K0,N1, K1, N, K;
|
|
unsigned int *J_slap0, *r_slap0, *J_slap1, *r_slap1, *J_slap, *r_slap;
|
|
double *w_slap;
|
|
|
|
/*dichiarazioni mie*/
|
|
/*r_slap e' lungo N+1, da 0 a N compresi*/
|
|
int i, j;
|
|
double f_j, f_j_2;
|
|
double alpha = (atof(argv[5]));
|
|
double beta = (atof(argv[6]));
|
|
|
|
/*il bias*/
|
|
int ov;
|
|
int deg0, deg1;
|
|
double degM, prodM, part, intM;
|
|
double degMrid, maxdegM = 200.0;
|
|
|
|
int number_nodes=(atoi(argv[4]));
|
|
double M=2.0;
|
|
|
|
filein0 = openfile_or_exit(argv[1], "r", 2);
|
|
read_slap(filein0, &K0, &N0, &J_slap0, &r_slap0);
|
|
|
|
filein1 = openfile_or_exit(argv[2], "r", 2);
|
|
read_slap(filein1, &K1, &N1, &J_slap1, &r_slap1);
|
|
|
|
|
|
filein = openfile_or_exit(argv[3], "r", 2);
|
|
read_slap_w(filein, &K, &N, &J_slap, &r_slap,&w_slap);
|
|
|
|
int r_slap0_n[N+1],r_slap1_n[N+1];
|
|
for (i=0; i<=N; i++) {
|
|
if (i<=N0) {
|
|
r_slap0_n[i]=r_slap0[i];
|
|
}
|
|
else {
|
|
r_slap0_n[i]=r_slap0[N0];
|
|
}
|
|
if (i<=N1) {
|
|
r_slap1_n[i]=r_slap1[i];
|
|
}
|
|
else {
|
|
r_slap1_n[i]=r_slap1[N1];
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double cf_i_vec_add[N];
|
|
double cf_i_vec_mult[N];
|
|
double cf_i_vec_part[N];
|
|
double cf_i_vec_int[N];
|
|
|
|
double tot_add=0, tot_mult=0, tot_part=0, tot_int=0;
|
|
double c_i_add, c_i_mult, c_i_part, c_i_int;
|
|
double f_add, f_mult, f_int;
|
|
/*ciclo sui nodi dell'aggregato*/
|
|
for (i=0; i<N; i++) {
|
|
c_i_add=0;
|
|
c_i_mult=0;
|
|
c_i_part=0;
|
|
c_i_int=0;
|
|
|
|
/*ciclo sui primi vicini di i*/
|
|
for (j=r_slap[i]; j<r_slap[i+1]; j++) {
|
|
ov = w_slap[j];
|
|
|
|
deg0=r_slap0_n[J_slap[j]+1]-r_slap0_n[J_slap[j]];
|
|
|
|
deg1=r_slap1_n[J_slap[j]+1]-r_slap1_n[J_slap[j]];
|
|
|
|
|
|
degM=(deg0+deg1)*1.0;
|
|
//prodM=(deg0*deg1)*1.0;
|
|
part = (M/(M-1))* (1-(pow((deg0/degM),2))-(pow((deg1/degM),2)) );
|
|
//intM=degM*part;
|
|
if (deg0>0.0000000001) {
|
|
f_j = pow (deg0, alpha);
|
|
}
|
|
else {
|
|
f_j = 0;
|
|
}
|
|
if (deg1>0.0000000001) {
|
|
f_j_2 = pow (deg1, beta);
|
|
}
|
|
else {
|
|
f_j_2=0;
|
|
}
|
|
|
|
c_i_add+=ov*(f_j+f_j_2);
|
|
|
|
if (deg0>0.0000000001) {
|
|
f_j = pow (deg0, alpha);
|
|
}
|
|
else {
|
|
f_j = 0;
|
|
}
|
|
if (deg1>0.0000000001) {
|
|
f_j_2 = pow (deg1, beta);
|
|
}
|
|
else {
|
|
f_j_2=0;
|
|
}
|
|
|
|
c_i_mult+=ov*(f_j*f_j_2);
|
|
//c_i_part+=ov*part;
|
|
|
|
part = (M/(M-1))* (1-(pow((deg0/degM),2))-(pow((deg1/degM),2)) );
|
|
if (part>0.0000000001) {
|
|
f_j = pow (part, alpha);
|
|
}
|
|
else {
|
|
f_j = 0;
|
|
}
|
|
f_j_2 = pow (degM, beta);
|
|
|
|
c_i_int+=ov*(f_j*f_j_2);
|
|
|
|
/*chiudo il for*/
|
|
}
|
|
|
|
deg0=r_slap0_n[i+1]-r_slap0_n[i];
|
|
deg1=r_slap1_n[i+1]-r_slap1_n[i];
|
|
|
|
degM=(deg0+deg1)*1.0;
|
|
prodM=(deg0*deg1)*1.0;
|
|
part = (M/(M-1))* (1-(pow((deg0/degM),2))-(pow((deg1/degM),2)) );
|
|
|
|
intM=degM*part;
|
|
|
|
if (deg0>0.0000000001) {
|
|
f_j = pow (deg0, alpha);
|
|
}
|
|
else {
|
|
f_j = 0;
|
|
}
|
|
if (deg1>0.0000000001) {
|
|
f_j_2 = pow (deg1, beta);
|
|
}
|
|
else {
|
|
f_j_2=0;
|
|
}
|
|
|
|
|
|
cf_i_vec_add[i]=c_i_add*(f_j+f_j_2);
|
|
|
|
|
|
if (deg0>0.0000000001) {
|
|
f_j = pow (deg0, alpha);
|
|
}
|
|
else {
|
|
f_j = 0;
|
|
}
|
|
if (deg1>0.0000000001) {
|
|
f_j_2 = pow (deg1, beta);
|
|
}
|
|
else {
|
|
f_j_2=0;
|
|
}
|
|
|
|
|
|
|
|
cf_i_vec_mult[i]=c_i_mult*(f_j*f_j_2);
|
|
//cf_i_vec_part[i]=c_i_part*part;
|
|
if (part>0.0000000001) {
|
|
f_j = pow (part, alpha);
|
|
}
|
|
else {
|
|
f_j = 0;
|
|
}
|
|
f_j_2 = pow (degM, beta);
|
|
|
|
|
|
|
|
cf_i_vec_int[i]=c_i_int*(f_j*f_j_2);
|
|
|
|
tot_add+=cf_i_vec_add[i];
|
|
tot_mult+=cf_i_vec_mult[i];
|
|
tot_part+=cf_i_vec_part[i];
|
|
tot_int+=cf_i_vec_int[i];
|
|
}
|
|
|
|
|
|
double vec_add[N];
|
|
double vec_mult[N];
|
|
double vec_part[N];
|
|
double vec_int[N];
|
|
double tot_add_rid=0, tot_mult_rid=0, tot_part_rid=0, tot_int_rid=0;
|
|
|
|
for (i=0; i<N; i++) {
|
|
vec_add[i]=cf_i_vec_add[i]/tot_add;
|
|
vec_mult[i]=cf_i_vec_mult[i]/tot_mult;
|
|
vec_part[i]=cf_i_vec_part[i]/tot_part;
|
|
vec_int[i]=cf_i_vec_int[i]/tot_int;
|
|
tot_add_rid+=vec_add[i];
|
|
tot_mult_rid+=vec_mult[i];
|
|
tot_part_rid+=vec_part[i];
|
|
tot_int_rid+=vec_int[i];
|
|
|
|
}
|
|
|
|
//sigma delle distr
|
|
double average_add, variance_add, std_deviation_add, sum_add = 0, sum1_add = 0;
|
|
double average_mult, variance_mult, std_deviation_mult, sum_mult = 0, sum1_mult = 0;
|
|
|
|
double average_int, variance_int, std_deviation_int, sum_int = 0, sum1_int = 0;
|
|
double sigma_norm_add, sigma_norm_mult, sigma_norm_int;
|
|
for (i=0; i<N; i++) {
|
|
printf("%d %g %g %g %g %g\n", i, vec_add[i],vec_mult[i],vec_int[i], alpha, beta);
|
|
|
|
}
|
|
|
|
}
|
|
|