|
|
|
#
|
|
|
|
#
|
|
|
|
# multired.py
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# Copyright (C) 2015 Vincenzo (Enzo) Nicosia <katolaz@yahoo.it>
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# This program is free software: you can redistribute it and/or modify
|
|
|
|
# it under the terms of the GNU General Public License as published by
|
|
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
|
|
# (at your option) any later version.
|
|
|
|
#
|
|
|
|
# This program is distributed in the hope that it will be useful, but
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
# General Public License for more details.
|
|
|
|
#
|
|
|
|
# You should have received a copy of the GNU General Public License
|
|
|
|
# long with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# This module provides the class multiplex_red, which implements the
|
|
|
|
# algorithm for the structural reduction of multi-layer networks
|
|
|
|
# based on the Von Neumann entropy and Quantum Jensen-Shannon
|
|
|
|
# divergence of graphs.
|
|
|
|
#
|
|
|
|
# If you use this code please cite the paper:
|
|
|
|
#
|
|
|
|
# M. De Domenico, V. Nicosia, A. Arenas, V. Latora,
|
|
|
|
# "Structural reducibility of multilayer networks"
|
|
|
|
# Nat. Commun. 6, 6864 (2015) doi:10.1038/ncomms7864
|
|
|
|
#
|
|
|
|
# --------------------------------------------
|
|
|
|
#
|
|
|
|
# -- 2015/04/23 -- release 0.1
|
|
|
|
# -- 2015/05/11 -- release 0.1.1 -- removed the last full matrices
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
from scipy.sparse import csr_matrix, eye
|
|
|
|
from scipy.linalg import eigh, eig
|
|
|
|
import copy
|
|
|
|
from scipy.cluster.hierarchy import linkage, dendrogram
|
|
|
|
|
|
|
|
has_matplotlib = False
|
|
|
|
|
|
|
|
try:
|
|
|
|
import matplotlib
|
|
|
|
has_matplotlib = True
|
|
|
|
|
|
|
|
except ImportError:
|
|
|
|
has_matplotlib = False
|
|
|
|
|
|
|
|
|
|
|
|
class XLogx_fit:
|
|
|
|
def __init__(self, degree, npoints= 100, xmax=1):
|
|
|
|
if xmax > 1:
|
|
|
|
xmax = 1
|
|
|
|
self.degree = degree
|
|
|
|
x = np.linspace(0, xmax, npoints)
|
|
|
|
y = [i * math.log(i) for i in x[1:]]
|
|
|
|
y.insert(0, 0)
|
|
|
|
self.fit = np.polyfit(x, y, degree)
|
|
|
|
|
|
|
|
def __getitem__ (self, index):
|
|
|
|
if index <= self.degree:
|
|
|
|
return self.fit[index]
|
|
|
|
else:
|
|
|
|
print "Error!!! Index %d is larger than the degree of the fitting polynomial (%d)" \
|
|
|
|
% (index, degree)
|
|
|
|
sys.exit(-1)
|
|
|
|
|
|
|
|
|
|
|
|
class layer:
|
|
|
|
def __init__ (self, layerfile= None, matrix=None):
|
|
|
|
self.N = 0
|
|
|
|
self.num_layer = -1
|
|
|
|
self.fname = layerfile
|
|
|
|
self.adj_matr = None
|
|
|
|
self.laplacian = None
|
|
|
|
self.resc_laplacian = None
|
|
|
|
self.entropy = None
|
|
|
|
self.entropy_approx = None
|
|
|
|
self._ii = []
|
|
|
|
self._jj = []
|
|
|
|
self._ww = []
|
|
|
|
self._matrix_called = False
|
|
|
|
if layerfile != None:
|
|
|
|
try:
|
|
|
|
min_N = 10e10
|
|
|
|
with open(layerfile, "r") as lines:
|
|
|
|
for l in lines:
|
|
|
|
if l[0] == '#':
|
|
|
|
continue
|
|
|
|
elems = l.strip(" \n").split(" ")
|
|
|
|
s = int(elems[0])
|
|
|
|
d = int(elems[1])
|
|
|
|
self._ii.append(s)
|
|
|
|
self._jj.append(d)
|
|
|
|
if s > self.N:
|
|
|
|
self.N = s
|
|
|
|
if d > self.N:
|
|
|
|
self.N = d
|
|
|
|
if s < min_N:
|
|
|
|
min_N = s
|
|
|
|
if d < min_N:
|
|
|
|
min_N = d
|
|
|
|
if len(elems) >2 : ## A weight is specified
|
|
|
|
val = [float(x) if "e" in x or "." in x else int(x) for x in [elems[2]]][0]
|
|
|
|
self._ww.append(float(val))
|
|
|
|
else:
|
|
|
|
self._ww.append(int(1))
|
|
|
|
|
|
|
|
except (IOError):
|
|
|
|
print "Unable to find/open file %s -- Exiting!!!" % layerfile
|
|
|
|
exit(-2)
|
|
|
|
elif matrix != None:
|
|
|
|
self.adj_matr = copy.copy(matrix)
|
|
|
|
self.N, _x = matrix.shape
|
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
|
|
|
|
#D = np.diag(np.diag(K))
|
|
|
|
K = self.adj_matr.sum(0)
|
|
|
|
D = csr_matrix((self.N, self.N))
|
|
|
|
D.setdiag(eye(self.N) * K.transpose())
|
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr)
|
|
|
|
K = self.laplacian.diagonal().sum()
|
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K)
|
|
|
|
self._matrix_called = True
|
|
|
|
else:
|
|
|
|
print "The given matrix is BLANK"
|
|
|
|
def make_matrices(self, N):
|
|
|
|
self.N = N
|
|
|
|
self.adj_matr = csr_matrix((self._ww, (self._ii, self._jj)), shape=(self.N, self.N))
|
|
|
|
self.adj_matr = self.adj_matr + self.adj_matr.transpose()
|
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
|
|
|
|
#D = np.diag(np.diag(K))
|
|
|
|
K = self.adj_matr.sum(0)
|
|
|
|
D = csr_matrix((self.N, self.N))
|
|
|
|
D.setdiag(eye(self.N) * K.transpose())
|
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr)
|
|
|
|
K = self.laplacian.diagonal().sum()
|
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K)
|
|
|
|
self._matrix_called = True
|
|
|
|
|
|
|
|
def dump_info(self):
|
|
|
|
N, M = self.adj_matr.shape
|
|
|
|
K = self.adj_matr.nnz
|
|
|
|
sys.stderr.write("Layer File: %s\nNodes: %d Edges: %d\nEntropy: %g Approx. Entropy: %g\n" % \
|
|
|
|
(self.fname, N, K, self.entropy, self.entropy_approx) )
|
|
|
|
|
|
|
|
def compute_VN_entropy(self):
|
|
|
|
eigvals = eigh(self.resc_laplacian.todense())
|
|
|
|
|
|
|
|
self.entropy = 0
|
|
|
|
for l_i in eigvals[0]:
|
|
|
|
if (l_i > 10e-20):
|
|
|
|
self.entropy -= l_i * math.log (l_i)
|
|
|
|
|
|
|
|
|
|
|
|
def compute_VN_entropy_approx(self, poly):
|
|
|
|
p = poly.degree
|
|
|
|
h = - poly[p] * self.N
|
|
|
|
M = csr_matrix(np.eye(self.N))
|
|
|
|
for i in range(p-1, -1, -1):
|
|
|
|
M = M * self.resc_laplacian
|
|
|
|
h += - poly[i] * sum(M.diagonal())
|
|
|
|
self.entropy_approx = h
|
|
|
|
|
|
|
|
def aggregate(self, other_layer):
|
|
|
|
if self.adj_matr != None:
|
|
|
|
self.adj_matr = self.adj_matr + other_layer.adj_matr
|
|
|
|
else:
|
|
|
|
self.adj_matr = copy.copy(other_layer.adj_matr)
|
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
|
|
|
|
#D = np.diag(np.diag(K))
|
|
|
|
K = self.adj_matr.sum(0)
|
|
|
|
D = csr_matrix((self.N, self.N))
|
|
|
|
D.setdiag(eye(self.N) * K. transpose())
|
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr)
|
|
|
|
K = self.laplacian.diagonal().sum()
|
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K)
|
|
|
|
self._matrix_called = True
|
|
|
|
|
|
|
|
def dump_laplacian(self):
|
|
|
|
print self.laplacian
|
|
|
|
|
|
|
|
class multiplex_red:
|
|
|
|
|
|
|
|
def __init__ (self, multiplexfile, directed = None, fit_degree=10, verbose=False):
|
|
|
|
self.layers = []
|
|
|
|
self.N = 0
|
|
|
|
self.M = 0
|
|
|
|
self.entropy = 0
|
|
|
|
self.entropy_approx = 0
|
|
|
|
self.JSD = None
|
|
|
|
self.JSD_approx = None
|
|
|
|
self.Z = None
|
|
|
|
self.Z_approx = None
|
|
|
|
self.aggr = None
|
|
|
|
self.q_vals = None
|
|
|
|
self.q_vals_approx = None
|
|
|
|
self.fit_degree = fit_degree
|
|
|
|
self.poly = XLogx_fit(self.fit_degree)
|
|
|
|
self.verb = verbose
|
|
|
|
self.cuts = None
|
|
|
|
self.cuts_approx = None
|
|
|
|
try:
|
|
|
|
with open(multiplexfile, "r") as lines:
|
|
|
|
for l in lines:
|
|
|
|
if (self.verb):
|
|
|
|
sys.stderr.write("Loading layer %d from file %s" % (len(self.layers), l))
|
|
|
|
A = layer(l.strip(" \n"))
|
|
|
|
if A.N > self.N:
|
|
|
|
self.N = A.N+1
|
|
|
|
self.layers.append(A)
|
|
|
|
n = 0
|
|
|
|
for l in self.layers:
|
|
|
|
l.make_matrices(self.N)
|
|
|
|
l.num_layer = n
|
|
|
|
n += 1
|
|
|
|
self.M = len(self.layers)
|
|
|
|
except ( IOError):
|
|
|
|
print "Unable to find/open file %s -- Exiting!!!" % layer_file
|
|
|
|
exit(-2)
|
|
|
|
|
|
|
|
def dump_info(self):
|
|
|
|
i = 0
|
|
|
|
for l in self.layers:
|
|
|
|
sys.stderr.write("--------\nLayer: %d\n" % i)
|
|
|
|
l.dump_info()
|
|
|
|
i += 1
|
|
|
|
|
|
|
|
|
|
|
|
def compute_aggregated(self):
|
|
|
|
self.aggr = copy.copy(self.layers[0])
|
|
|
|
self.aggr.entropy = 0
|
|
|
|
self.aggr.entropy_approx = 0
|
|
|
|
for l in self.layers[1:]:
|
|
|
|
self.aggr.aggregate(l)
|
|
|
|
|
|
|
|
def compute_layer_entropies(self):
|
|
|
|
for l in self.layers:
|
|
|
|
l.compute_VN_entropy()
|
|
|
|
|
|
|
|
def compute_layer_entropies_approx(self):
|
|
|
|
for l in self.layers:
|
|
|
|
l.compute_VN_entropy_approx(self.poly)
|
|
|
|
|
|
|
|
|
|
|
|
def compute_multiplex_entropy(self, force_compute=False):
|
|
|
|
### The entropy of a multiplex is defined as the sum of the entropies of its layers
|
|
|
|
for l in self.layers:
|
|
|
|
if l.entropy == None:
|
|
|
|
l.compute_VN_entropy()
|
|
|
|
self.entropy += l.entropy
|
|
|
|
|
|
|
|
def compute_multiplex_entropy_approx(self, force_compute=False):
|
|
|
|
### The entropy of a multiplex is defined as the sum of the entropies of its layers
|
|
|
|
for l in self.layers:
|
|
|
|
if l.entropy_approx == None:
|
|
|
|
l.compute_VN_entropy_approx(self.poly)
|
|
|
|
self.entropy_approx += l.entropy_approx
|
|
|
|
|
|
|
|
def compute_JSD_matrix(self):
|
|
|
|
if (self.verb):
|
|
|
|
sys.stderr.write("Computing JSD matrix\n")
|
|
|
|
self.JSD = np.zeros((self.M, self.M))
|
|
|
|
for i in range(len(self.layers)):
|
|
|
|
for j in range(i+1, len(self.layers)):
|
|
|
|
li = self.layers[i]
|
|
|
|
lj = self.layers[j]
|
|
|
|
if not li.entropy:
|
|
|
|
li.compute_VN_entropy()
|
|
|
|
if not lj.entropy:
|
|
|
|
lj.compute_VN_entropy()
|
|
|
|
# m_sigma = (li.resc_laplacian + lj.resc_laplacian)/2.0
|
|
|
|
# m_sigma_entropy = mr.compute_VN_entropy_LR(m_sigma)
|
|
|
|
m_sigma_matr = (li.adj_matr + lj.adj_matr)/2.0
|
|
|
|
m_sigma = layer(matrix=m_sigma_matr)
|
|
|
|
m_sigma.compute_VN_entropy()
|
|
|
|
d = m_sigma.entropy - 0.5 * (li.entropy + lj.entropy)
|
|
|
|
d = math.sqrt(d)
|
|
|
|
self.JSD[i][j] = d
|
|
|
|
self.JSD[j][i] = d
|
|
|
|
pass
|
|
|
|
|
|
|
|
def compute_JSD_matrix_approx(self):
|
|
|
|
if (self.verb):
|
|
|
|
sys.stderr.write("Computing JSD matrix (approx)\n")
|
|
|
|
self.JSD_approx = np.zeros((self.M, self.M))
|
|
|
|
for i in range(len(self.layers)):
|
|
|
|
for j in range(i+1, len(self.layers)):
|
|
|
|
li = self.layers[i]
|
|
|
|
lj = self.layers[j]
|
|
|
|
if not li.entropy_approx:
|
|
|
|
li.compute_VN_entropy_approx(self.poly)
|
|
|
|
if not lj.entropy_approx:
|
|
|
|
lj.compute_VN_entropy_approx(self.poly)
|
|
|
|
m_sigma_matr = (li.adj_matr + lj.adj_matr)/2.0
|
|
|
|
m_sigma = layer(matrix=m_sigma_matr)
|
|
|
|
m_sigma.compute_VN_entropy_approx(self.poly)
|
|
|
|
d = m_sigma.entropy_approx - 0.5 * (li.entropy_approx + lj.entropy_approx)
|
|
|
|
d = math.sqrt(d)
|
|
|
|
self.JSD_approx[i][j] = d
|
|
|
|
self.JSD_approx[j][i] = d
|
|
|
|
|
|
|
|
def dump_JSD(self, force_compute=False):
|
|
|
|
if self.JSD == None:
|
|
|
|
if force_compute:
|
|
|
|
self.compute_JSD_matrix()
|
|
|
|
else:
|
|
|
|
print "Error!!! call to dump_JSD but JSD matrix has not been computed!!!"
|
|
|
|
sys.exit(1)
|
|
|
|
idx = 0
|
|
|
|
for i in range(self.len):
|
|
|
|
for j in range(i+1, self.len):
|
|
|
|
print i, j, self.JSD[idx]
|
|
|
|
idx += 1
|
|
|
|
|
|
|
|
def dump_JSD_approx(self, force_compute=False):
|
|
|
|
if self.JSD_approx == None:
|
|
|
|
if force_compute:
|
|
|
|
self.compute_JSD_matrix_approx()
|
|
|
|
else:
|
|
|
|
print "Error!!! call to dump_JSD_approx but JSD approximate matrix has not been computed!!!"
|
|
|
|
sys.exit(1)
|
|
|
|
idx = 0
|
|
|
|
for i in range(self.M):
|
|
|
|
for j in range(i+1, self.M):
|
|
|
|
print i, j, self.JSD_approx[idx]
|
|
|
|
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
def reduce(self, method="ward"):
|
|
|
|
if (self.verb):
|
|
|
|
sys.stderr.write("Performing '%s' reduction\n" % method)
|
|
|
|
if self.JSD == None:
|
|
|
|
self.compute_JSD_matrix()
|
|
|
|
self.Z = linkage(self.JSD, method=method)
|
|
|
|
return self.Z
|
|
|
|
|
|
|
|
def reduce_approx(self, method="ward"):
|
|
|
|
if (self.verb):
|
|
|
|
sys.stderr.write("Performing '%s' reduction (approx)\n" % method)
|
|
|
|
if self.JSD_approx == None:
|
|
|
|
self.compute_JSD_matrix_approx()
|
|
|
|
self.Z_approx = linkage(self.JSD_approx, method=method)
|
|
|
|
return self.Z_approx
|
|
|
|
|
|
|
|
def get_linkage(self):
|
|
|
|
return self.Z
|
|
|
|
|
|
|
|
def get_linkage_approx(self):
|
|
|
|
return self.Z_approx
|
|
|
|
|
|
|
|
def __compute_q(self, layers):
|
|
|
|
H_avg = 0
|
|
|
|
if not self.aggr:
|
|
|
|
self.compute_aggregated()
|
|
|
|
self.aggr.compute_VN_entropy()
|
|
|
|
for l in layers:
|
|
|
|
if not l.entropy:
|
|
|
|
l.compute_VN_entropy()
|
|
|
|
H_avg += l.entropy
|
|
|
|
H_avg /= len(layers)
|
|
|
|
q = 1.0 - H_avg / self.aggr.entropy
|
|
|
|
return q
|
|
|
|
|
|
|
|
def get_q_profile(self):
|
|
|
|
mylayers = copy.copy(self.layers)
|
|
|
|
rem_layers = copy.copy(self.layers)
|
|
|
|
q_vals = []
|
|
|
|
if self.Z == None:
|
|
|
|
self.reduce()
|
|
|
|
q = self.__compute_q(rem_layers)
|
|
|
|
q_vals.append(q)
|
|
|
|
n = len(self.layers)
|
|
|
|
for l1, l2, _d, _x in self.Z:
|
|
|
|
l_new = layer(matrix=mylayers[int(l1)].adj_matr)
|
|
|
|
l_new.num_layer = n
|
|
|
|
n += 1
|
|
|
|
l_new.aggregate(mylayers[int(l2)])
|
|
|
|
rem_layers.remove(mylayers[int(l1)])
|
|
|
|
rem_layers.remove(mylayers[int(l2)])
|
|
|
|
rem_layers.append(l_new)
|
|
|
|
mylayers.append(l_new)
|
|
|
|
q = self.__compute_q(rem_layers)
|
|
|
|
q_vals.append(q)
|
|
|
|
self.q_vals = q_vals
|
|
|
|
return q_vals
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def __compute_q_approx(self, layers):
|
|
|
|
H_avg = 0
|
|
|
|
if not self.aggr:
|
|
|
|
self.compute_aggregated()
|
|
|
|
self.aggr.compute_VN_entropy_approx(self.poly)
|
|
|
|
for l in layers:
|
|
|
|
if not l.entropy_approx:
|
|
|
|
l.compute_VN_entropy_approx(self.poly)
|
|
|
|
H_avg += l.entropy_approx
|
|
|
|
H_avg /= len(layers)
|
|
|
|
q = 1.0 - H_avg / self.aggr.entropy_approx
|
|
|
|
return q
|
|
|
|
|
|
|
|
def get_q_profile_approx(self):
|
|
|
|
mylayers = copy.copy(self.layers)
|
|
|
|
rem_layers = copy.copy(self.layers)
|
|
|
|
q_vals = []
|
|
|
|
if self.Z_approx == None:
|
|
|
|
self.reduce_approx()
|
|
|
|
q = self.__compute_q_approx(rem_layers)
|
|
|
|
q_vals.append(q)
|
|
|
|
n = len(self.layers)
|
|
|
|
for l1, l2, _d, _x in self.Z_approx:
|
|
|
|
l_new = layer(matrix=mylayers[int(l1)].adj_matr)
|
|
|
|
l_new.num_layer = n
|
|
|
|
n += 1
|
|
|
|
l_new.aggregate(mylayers[int(l2)])
|
|
|
|
rem_layers.remove(mylayers[int(l1)])
|
|
|
|
rem_layers.remove(mylayers[int(l2)])
|
|
|
|
rem_layers.append(l_new)
|
|
|
|
mylayers.append(l_new)
|
|
|
|
q = self.__compute_q_approx(rem_layers)
|
|
|
|
q_vals.append(q)
|
|
|
|
self.q_vals_approx = q_vals
|
|
|
|
return q_vals
|
|
|
|
|
|
|
|
def compute_partitions(self):
|
|
|
|
if (self.verb):
|
|
|
|
sys.stderr.write("Getting partitions...\n")
|
|
|
|
if self.Z == None:
|
|
|
|
self.reduce()
|
|
|
|
if self.q_vals == None:
|
|
|
|
self.get_q_profile()
|
|
|
|
sets = {}
|
|
|
|
M = len(self.layers)
|
|
|
|
for i in range(len(self.layers)):
|
|
|
|
sets[i] = [i]
|
|
|
|
best_pos = self.q_vals.index(max(self.q_vals))
|
|
|
|
j = 0
|
|
|
|
cur_part = sets.values()
|
|
|
|
self.cuts = [copy.deepcopy(cur_part)]
|
|
|
|
while j < M-1:
|
|
|
|
l1, l2, _x, _y = self.Z[j]
|
|
|
|
l1 = int(l1)
|
|
|
|
l2 = int(l2)
|
|
|
|
val = sets[l1]
|
|
|
|
val.extend(sets[l2])
|
|
|
|
sets[M+j] = val
|
|
|
|
r1 = cur_part.index(sets[l1])
|
|
|
|
cur_part.pop(r1)
|
|
|
|
r2 = cur_part.index(sets[l2])
|
|
|
|
cur_part.pop(r2)
|
|
|
|
cur_part.append(val)
|
|
|
|
j += 1
|
|
|
|
self.cuts.append(copy.deepcopy(cur_part))
|
|
|
|
self.cuts.append(copy.deepcopy(cur_part))
|
|
|
|
return zip(self.q_vals, self.cuts)
|
|
|
|
|
|
|
|
|
|
|
|
def compute_partitions_approx(self):
|
|
|
|
if (self.verb):
|
|
|
|
sys.stderr.write("Getting partitions (approx)...\n")
|
|
|
|
if self.Z_approx == None:
|
|
|
|
self.reduce_approx()
|
|
|
|
if self.q_vals_approx == None:
|
|
|
|
self.get_q_profile_approx()
|
|
|
|
sets = {}
|
|
|
|
M = len(self.layers)
|
|
|
|
for i in range(len(self.layers)):
|
|
|
|
sets[i] = [i]
|
|
|
|
best_pos = self.q_vals_approx.index(max(self.q_vals_approx))
|
|
|
|
j = 0
|
|
|
|
cur_part = sets.values()
|
|
|
|
self.cuts_approx = [copy.deepcopy(cur_part)]
|
|
|
|
while j < M-1:
|
|
|
|
l1, l2, _x, _y = self.Z_approx[j]
|
|
|
|
l1 = int(l1)
|
|
|
|
l2 = int(l2)
|
|
|
|
val = sets[l1]
|
|
|
|
val.extend(sets[l2])
|
|
|
|
sets[M+j] = val
|
|
|
|
r1 = cur_part.index(sets[l1])
|
|
|
|
cur_part.pop(r1)
|
|
|
|
r2 = cur_part.index(sets[l2])
|
|
|
|
cur_part.pop(r2)
|
|
|
|
cur_part.append(val)
|
|
|
|
j += 1
|
|
|
|
self.cuts_approx.append(copy.deepcopy(cur_part))
|
|
|
|
self.cuts_approx.append(copy.deepcopy(cur_part))
|
|
|
|
return zip(self.q_vals_approx, self.cuts_approx)
|
|
|
|
|
|
|
|
def draw_dendrogram(self, force = False):
|
|
|
|
if not has_matplotlib:
|
|
|
|
sys.stderr.write("No matplotlib module found in draw_dendrogram...Exiting!!!\n")
|
|
|
|
sys.exit(3)
|
|
|
|
if self.Z == None:
|
|
|
|
if not force:
|
|
|
|
sys.stderr.write("Please call reduce() first or specify 'force=True'")
|
|
|
|
else:
|
|
|
|
self.reduce()
|
|
|
|
dendrogram(self.Z, no_plot=False)
|
|
|
|
matplotlib.pyplot.draw()
|
|
|
|
matplotlib.pyplot.show()
|
|
|
|
|
|
|
|
def draw_dendrogram_approx(self, force = False):
|
|
|
|
if not has_matplotlib:
|
|
|
|
sys.stderr.write("No matplotlib module found in draw_dendrogram_approx...Exiting!!!\n")
|
|
|
|
sys.exit(3)
|
|
|
|
if self.Z_approx == None:
|
|
|
|
if not force:
|
|
|
|
sys.stderr.write("Please call reduce_approx() first or specify 'force=True'")
|
|
|
|
else:
|
|
|
|
self.reduce_approx()
|
|
|
|
dendrogram(self.Z_approx, no_plot=False)
|
|
|
|
matplotlib.pyplot.draw()
|
|
|
|
matplotlib.pyplot.show()
|
|
|
|
|
|
|
|
def dump_partitions(self):
|
|
|
|
part = zip(self.q_vals, self.cuts)
|
|
|
|
for q, p in part:
|
|
|
|
print q, "->", p
|
|
|
|
|
|
|
|
def dump_partitions_approx(self):
|
|
|
|
part = zip(self.q_vals_approx, self.cuts_approx)
|
|
|
|
for q, p in part:
|
|
|
|
print q, "->", p
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|