- Added the Noordin Top Terrorist dataset in the folder "sample_data"

- amended README.md
master
KatolaZ 10 years ago
parent 36c4a38049
commit c00bda7826
  1. 18
      python/README.md
  2. 28
      python/sample_data/README
  3. 200
      python/sample_data/communication.txt
  4. 4
      python/sample_data/file_list
  5. 15
      python/sample_data/financial.txt
  6. 437
      python/sample_data/operationalaggregated.txt
  7. 259
      python/sample_data/trustaggregated.txt

@ -22,7 +22,7 @@
This is multired-0.1.
This is a Python implmementation of the algorithm for structural
This is a Python implementation of the algorithm for structural
reduction of multi-layer networks based on the Von Neumann and on the
Quantum Jensen-Shannon divergence of graphs, as explained in:
@ -60,7 +60,21 @@ approximation is based on a 10th order polynomial fit of x log(x) in
[0,1], but the order of the polynomial can be set through the
parameter "fit_degree" of the constructor.
Several sample scripts can be found in the "test/" directory.
Several sample scripts can be found in the "test/" directory. You also
find a sample data set in the folder "sample_data/". That is the 4-layer
Noordin Top Terrorist multiplex network, originally provided in:
N. Roberts, S. F. Everton, Roberts and Everton "Terrorist
Data: Noordin Top Terrorist Network" (Subset) (2011).
and extensively studied in:
F. Battiston, V. Nicosia, V. Latora,
"Structural measures for multiplex networks",
Phys. Rev. E 89, 032804 (2014).
Please consider citing those papers if you use that data set in a
scientific work.
--------------------
DEPENDENCIES

@ -0,0 +1,28 @@
-------------------------------
Noordin Top Terrorist Network
-------------------------------
This is the 4-layer multiplex networks of terrorist relationships
mentioned in:
N. Roberts, S. F. Everton, Roberts and Everton "Terrorist
Data: Noordin Top Terrorist Network" (Subset) (2011).
The four layers represent, respectively, communications, financial,
operation and trust relatioships among a group of 78 terrorists.
You can test multired on this data set by using, e.g., :
python simple_test.py file_list
If you use this data set in a research work, please cite that paper.
Please also consider that an exhaustive multi-layer analysis of this
network has been performed in:
F. Battiston, V. Nicosia, V. Latora,
"Structural measures for multiplex networks",
Phys. Rev. E 89, 032804 (2014).

@ -0,0 +1,200 @@
0 15
2 57
2 12
2 5
2 30
3 34
3 73
3 12
3 13
3 15
3 20
3 57
3 56
3 52
3 58
3 27
3 28
4 5
4 10
4 12
4 14
4 16
4 57
4 61
6 57
6 59
6 68
6 77
6 22
7 66
7 68
7 71
7 9
7 10
7 75
7 54
7 24
7 57
7 58
8 15
9 66
9 10
9 76
9 54
9 57
10 32
10 66
10 37
10 76
10 54
10 57
10 59
11 57
11 44
11 29
11 22
11 37
12 38
12 71
12 73
12 55
12 44
12 45
12 46
12 47
12 76
12 52
12 22
12 23
12 57
12 58
12 28
12 30
15 76
15 52
15 57
15 27
15 28
16 49
16 62
16 57
17 57
17 67
18 36
18 23
19 74
19 53
19 77
20 58
21 65
21 69
21 43
21 51
21 22
21 57
22 24
22 25
22 31
22 32
22 36
22 37
22 38
22 43
22 44
22 45
22 51
22 57
22 59
22 66
22 69
22 70
22 73
22 76
23 36
23 44
23 45
23 57
24 57
24 66
24 45
25 57
25 59
26 33
26 73
26 57
27 33
27 73
27 48
27 28
28 57
28 58
30 45
31 57
31 44
31 60
32 70
32 39
32 43
32 45
32 57
33 41
33 76
33 46
33 58
36 42
36 44
36 57
37 59
37 76
38 57
38 45
38 61
41 58
42 44
43 69
43 51
43 57
44 64
44 68
44 75
44 71
44 45
44 57
44 60
44 62
45 62
45 57
46 58
46 57
46 47
47 57
48 73
49 62
50 51
51 69
51 70
51 57
52 57
52 58
54 57
57 58
57 59
57 65
57 66
57 67
57 69
57 70
57 71
57 75
57 76
58 71
59 76
64 75
66 76
66 73
68 71
68 72
68 75
71 72
71 75

@ -0,0 +1,4 @@
communication.txt
financial.txt
operationalaggregated.txt
trustaggregated.txt

@ -0,0 +1,15 @@
9 76
9 66
9 68
11 60
20 58
22 51
22 43
22 57
24 66
43 57
43 51
51 57
66 68
66 76
68 76

@ -0,0 +1,437 @@
0 15
1 32
1 70
1 39
1 40
1 73
1 16
1 50
1 22
1 27
3 33
3 34
3 35
3 68
3 71
3 12
3 74
3 76
3 77
3 48
3 19
3 20
3 53
3 73
3 52
3 58
3 27
3 28
3 26
3 63
5 32
5 50
5 70
5 22
5 39
6 57
6 43
6 22
6 59
7 66
7 11
7 68
7 37
7 71
7 72
7 9
7 10
7 75
7 76
7 34
7 44
7 18
7 41
7 22
7 23
7 24
7 57
7 58
7 42
7 36
9 34
9 75
9 36
9 37
9 72
9 41
9 42
9 11
9 44
9 66
9 18
9 22
9 23
9 24
9 57
9 71
10 66
11 34
11 75
11 36
11 37
11 72
11 42
11 71
11 44
11 66
11 18
11 41
11 22
11 23
11 24
11 57
12 33
12 38
12 71
12 76
12 44
12 45
12 46
12 47
12 20
12 57
12 22
12 55
12 52
12 58
15 52
16 32
16 70
16 39
16 40
16 73
16 50
16 22
16 27
17 67
17 45
17 49
17 22
17 23
17 57
17 62
18 64
18 68
18 34
18 75
18 36
18 37
18 72
18 42
18 44
18 66
18 41
18 22
18 23
18 24
18 57
18 71
19 33
19 68
19 74
19 77
19 20
19 53
19 52
19 26
19 63
20 33
20 34
20 68
20 35
20 74
20 77
20 52
20 53
20 26
20 28
20 58
20 63
21 32
21 65
21 69
21 70
21 43
21 50
21 51
21 22
21 57
22 23
22 24
22 25
22 27
22 32
22 34
22 36
22 37
22 38
22 39
22 40
22 41
22 42
22 43
22 44
22 45
22 49
22 50
22 51
22 57
22 59
22 62
22 65
22 66
22 67
22 69
22 70
22 71
22 72
22 73
22 75
22 76
23 24
23 34
23 36
23 37
23 41
23 42
23 44
23 45
23 49
23 57
23 62
23 66
23 67
23 71
23 72
23 75
24 34
24 75
24 36
24 37
24 72
24 42
24 44
24 66
24 41
24 57
24 71
25 57
25 59
25 37
25 45
26 33
26 68
26 74
26 77
26 53
26 52
26 63
27 32
27 48
27 33
27 70
27 39
27 40
27 73
27 50
27 52
27 63
28 64
28 34
28 35
28 42
28 44
28 52
28 58
28 60
32 65
32 39
32 40
32 73
32 43
32 50
32 51
32 57
32 70
32 69
33 68
33 71
33 74
33 76
33 77
33 48
33 53
33 73
33 52
33 58
33 63
34 35
34 36
34 37
34 41
34 42
34 44
34 52
34 57
34 58
34 66
34 71
34 72
34 75
35 52
35 58
36 64
36 75
36 68
36 37
36 72
36 42
36 44
36 66
36 41
36 57
36 71
37 75
37 72
37 42
37 76
37 66
37 44
37 41
37 57
37 71
37 45
38 44
38 45
38 55
38 57
39 70
39 40
39 73
39 50
40 70
40 73
40 50
41 75
41 72
41 42
41 44
41 66
41 57
41 71
42 64
42 75
42 72
42 44
42 66
42 60
42 57
42 71
43 65
43 69
43 50
43 51
43 57
43 59
43 70
44 45
44 55
44 57
44 60
44 61
44 64
44 66
44 68
44 71
44 72
44 75
44 76
45 67
45 49
45 57
45 62
46 57
46 58
48 73
48 52
48 63
49 67
49 57
49 62
50 65
50 73
50 51
50 57
50 70
50 69
51 65
51 69
51 70
51 57
52 68
52 73
52 74
52 77
52 53
52 57
52 58
52 63
53 68
53 74
53 77
53 63
57 58
57 59
57 62
57 64
57 65
57 66
57 67
57 68
57 69
57 70
57 71
57 72
57 75
57 76
58 71
58 76
60 64
61 76
62 67
63 68
63 73
63 74
63 77
64 68
64 71
64 72
64 75
65 69
65 70
66 75
66 72
66 76
66 71
68 71
68 72
68 74
68 75
68 77
69 70
70 73
71 72
71 75
71 76
72 75
74 77

@ -0,0 +1,259 @@
0 15
1 65
1 4
1 5
1 71
1 45
1 50
1 51
1 21
1 23
1 68
1 69
2 12
2 5
3 34
3 41
3 12
3 20
3 56
3 52
3 28
4 5
4 6
4 10
4 12
4 16
4 21
4 22
4 23
4 27
4 30
4 32
4 37
4 39
4 43
4 45
4 47
4 50
4 51
4 57
4 61
4 65
4 66
4 68
4 69
4 70
4 71
4 77
5 66
5 69
5 70
5 65
5 10
5 71
5 12
5 45
5 77
5 47
5 50
5 51
5 21
5 23
5 68
5 30
6 32
6 68
6 59
6 39
6 43
6 16
6 51
6 22
6 57
6 27
6 30
7 65
7 66
7 68
7 71
7 75
7 44
7 54
7 57
8 15
9 66
9 59
9 76
9 10
9 54
10 32
10 76
10 54
10 57
10 59
10 37
11 60
11 44
11 29
12 38
12 71
12 23
12 44
12 45
12 47
12 52
12 55
12 58
12 30
15 76
15 28
16 32
16 69
16 39
16 43
16 77
16 51
16 22
16 57
16 27
16 30
17 57
17 67
18 44
18 36
19 56
20 52
20 53
21 66
21 43
21 65
21 71
21 45
21 50
21 51
21 57
21 23
21 68
21 69
22 32
22 69
22 39
22 38
22 43
22 44
22 77
22 45
22 51
22 57
22 27
22 30
23 65
23 71
23 45
23 50
23 51
23 57
23 68
23 69
24 66
25 59
27 32
27 33
27 69
27 39
27 73
27 43
27 77
27 51
27 57
27 30
28 73
29 60
30 32
30 66
30 39
30 43
30 77
30 45
30 50
30 51
30 57
30 70
30 69
31 44
32 70
33 58
33 46
36 44
38 42
38 45
38 57
38 61
39 69
39 42
39 43
39 77
39 51
39 57
42 44
43 69
43 77
43 51
43 57
44 64
44 65
44 68
44 71
44 75
44 57
45 65
45 57
45 71
45 50
45 51
45 68
45 62
45 69
46 58
47 66
50 66
50 70
50 65
50 71
50 51
50 68
50 69
51 68
51 66
51 77
51 69
51 57
51 71
51 65
52 73
52 57
52 58
53 74
53 77
54 57
57 58
57 69
57 76
59 76
65 75
65 71
65 68
65 69
66 70
66 76
66 69
68 75
68 71
68 69
69 71
69 70
71 72
71 75
71 76
74 77
Loading…
Cancel
Save