Version 0.1

master
KatolaZ 10 years ago
parent e0b97ed43f
commit 36c4a38049
  1. 41
      README.md
  2. 83
      python/README.md
  3. 487
      python/multired.py
  4. 22
      python/test/simple_test.py
  5. 16
      python/test/simple_test_approx.py
  6. 34
      python/test/test.py
  7. 34
      python/test/test_approx.py

@ -1,8 +1,37 @@
# multired
Algorithm for structural reduction of multi-layer networks
#multired
*
* Copyright (C) 2015 Vincenzo (Enzo) Nicosia <katolaz@yahoo.it>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* long with this program. If not, see <http://www.gnu.org/licenses/>.
*
----------------------
This is multired-0.1.
This is a Python implmementation of the algorithm for structural
reduction of multi-layer networks based on the Von Neumann and on the
Quantum Jensen-Shannon divergence of graphs, as explained in:
M. De Domenico. V. Nicosia, A. Arenas, V. Latora
"Structural reducibility of multilayer networks",
Nat. Commun. 6, 6864 (2015) doi:10.1038/ncomms7864
If you happen to find any use of this code please do not forget to
cite that paper ;-)
My plan is to provide also a C version in the future, but I cannot
guarantee that I will do so anytime soon.
Please cite:
M. De Domenico. V. Nicosia, A. Arenas, V. Latora
"Structural reducibility of multilayer networks",
Nat. Commun. 7864 (2015) doi:10.1038/ncomms7864

@ -0,0 +1,83 @@
# multired
/**
*
* Copyright (C) 2015 Vincenzo (Enzo) Nicosia <katolaz@yahoo.it>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* long with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
This is multired-0.1.
This is a Python implmementation of the algorithm for structural
reduction of multi-layer networks based on the Von Neumann and on the
Quantum Jensen-Shannon divergence of graphs, as explained in:
M. De Domenico. V. Nicosia, A. Arenas, V. Latora
"Structural reducibility of multilayer networks",
Nat. Commun. 6, 6864 (2015) doi:10.1038/ncomms7864
If you happen to find any use of this code please do not forget to
cite that paper ;-)
--------------------
INFO
--------------------
The module "multired.py" provides the class "multiplex_red", which
implements the algorithm to reduce a multilayer network described in
the paper cited above.
In order to use it, you just need to
import multired as mr
in your python script and create a multiplex_red object. Please make
sure that "multired.py" is in PYTHONPATH. The constructor requires as
its first argument the path of a file which in turn contains a list of
files (one for each line) where the graph of each layer is to be
found.
The class provides one set of methods which perform the exact
evaluation of the Von Neumann entropy, and another set of methods
(those whose name end with the suffix "_approx") which rely on a
polynomial approximation of the Von Neumann entropy. By default the
approximation is based on a 10th order polynomial fit of x log(x) in
[0,1], but the order of the polynomial can be set through the
parameter "fit_degree" of the constructor.
Several sample scripts can be found in the "test/" directory.
--------------------
DEPENDENCIES
--------------------
The only strict dependencies are a recent version of Python, Numpy and
SciPy. The methods "draw_dendrogram" and "draw_dendrogram_approx" will
work only if matplotlib is installed.
The module has been tested on a Debian GNU/Linux system, using:
- Python 2.7.8,
- SciPy 0.13.3
- Numpy 1.8.2
- matplotlib 1.3.1
but it will almost surely work on other platforms and/or with other
versions of those packages. If you would like to report a working
configuration, just email me (the address is at the beginning of this
file).

@ -0,0 +1,487 @@
import sys
import math
import numpy as np
from scipy.sparse import csr_matrix, eye
from scipy.linalg import eigh, eig
import copy
from scipy.cluster.hierarchy import linkage, dendrogram
has_matplotlib = False
try:
import matplotlib
has_matplotlib = True
except ImportError:
has_matplotlib = False
class XLogx_fit:
def __init__(self, degree, npoints= 100, xmax=1):
if xmax > 1:
xmax = 1
self.degree = degree
x = np.linspace(0, xmax, npoints)
y = [i * math.log(i) for i in x[1:]]
y.insert(0, 0)
self.fit = np.polyfit(x, y, degree)
def __getitem__ (self, index):
if index <= self.degree:
return self.fit[index]
else:
print "Error!!! Index %d is larger than the degree of the fitting polynomial (%d)" \
% (index, degree)
sys.exit(-1)
class layer:
def __init__ (self, layerfile= None, matrix=None):
self.N = 0
self.num_layer = -1
self.fname = layerfile
self.adj_matr = None
self.laplacian = None
self.resc_laplacian = None
self.entropy = None
self.entropy_approx = None
self._ii = []
self._jj = []
self._ww = []
self._matrix_called = False
if layerfile != None:
try:
min_N = 10e10
with open(layerfile, "r") as lines:
for l in lines:
if l[0] == '#':
continue
elems = l.strip(" \n").split(" ")
s = int(elems[0])
d = int(elems[1])
self._ii.append(s)
self._jj.append(d)
if s > self.N:
self.N = s
if d > self.N:
self.N = d
if s < min_N:
min_N = s
if d < min_N:
min_N = d
if len(elems) >2 : ## A weight is specified
val = [float(x) if "e" in x or "." in x else int(x) for x in [elems[2]]][0]
self._ww.append(float(val))
else:
self._ww.append(int(1))
except (IOError):
print "Unable to find/open file %s -- Exiting!!!" % layerfile
exit(-2)
elif matrix != None:
self.adj_matr = copy.copy(matrix)
self.N, _x = matrix.shape
K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
D = np.diag(np.diag(K))
self.laplacian = csr_matrix(D - self.adj_matr)
K = self.laplacian.diagonal().sum()
self.resc_laplacian = csr_matrix(self.laplacian / K)
self._matrix_called = True
else:
print "The given matrix is BLANK"
def make_matrices(self, N):
self.N = N
self.adj_matr = csr_matrix((self._ww, (self._ii, self._jj)), shape=(self.N, self.N))
self.adj_matr = self.adj_matr + self.adj_matr.transpose()
K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
D = np.diag(np.diag(K))
self.laplacian = csr_matrix(D - self.adj_matr)
K = self.laplacian.diagonal().sum()
self.resc_laplacian = csr_matrix(self.laplacian / K)
self._matrix_called = True
def dump_info(self):
N, M = self.adj_matr.shape
K = self.adj_matr.nnz
sys.stderr.write("Layer File: %s\nNodes: %d Edges: %d\nEntropy: %g Approx. Entropy: %g\n" % \
(self.fname, N, K, self.entropy, self.entropy_approx) )
def compute_VN_entropy(self):
eigvals = eigh(self.resc_laplacian.todense())
self.entropy = 0
for l_i in eigvals[0]:
if (l_i > 10e-20):
self.entropy -= l_i * math.log (l_i)
def compute_VN_entropy_approx(self, poly):
p = poly.degree
h = - poly[p] * self.N
M = csr_matrix(np.eye(self.N))
for i in range(p-1, -1, -1):
M = M * self.resc_laplacian
h += - poly[i] * sum(M.diagonal())
self.entropy_approx = h
def aggregate(self, other_layer):
if self.adj_matr != None:
self.adj_matr = self.adj_matr + other_layer.adj_matr
else:
self.adj_matr = copy.copy(other_layer.adj_matr)
K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
D = np.diag(np.diag(K))
self.laplacian = csr_matrix(D - self.adj_matr)
K = self.laplacian.diagonal().sum()
self.resc_laplacian = csr_matrix(self.laplacian / K)
self._matrix_called = True
class multiplex_red:
def __init__ (self, multiplexfile, directed = None, fit_degree=10, verbose=False):
self.layers = []
self.N = 0
self.M = 0
self.entropy = 0
self.entropy_approx = 0
self.JSD = None
self.JSD_approx = None
self.Z = None
self.Z_approx = None
self.aggr = None
self.q_vals = None
self.q_vals_approx = None
self.fit_degree = fit_degree
self.poly = XLogx_fit(self.fit_degree)
self.verb = verbose
self.cuts = None
self.cuts_approx = None
try:
with open(multiplexfile, "r") as lines:
for l in lines:
if (self.verb):
sys.stderr.write("Loading layer %d from file %s" % (len(self.layers), l))
A = layer(l.strip(" \n"))
if A.N > self.N:
self.N = A.N+1
self.layers.append(A)
n = 0
for l in self.layers:
l.make_matrices(self.N)
l.num_layer = n
n += 1
self.M = len(self.layers)
except ( IOError):
print "Unable to find/open file %s -- Exiting!!!" % layer_file
exit(-2)
def dump_info(self):
i = 0
for l in self.layers:
sys.stderr.write("--------\nLayer: %d\n" % i)
l.dump_info()
i += 1
def compute_aggregated(self):
self.aggr = copy.copy(self.layers[0])
self.aggr.entropy = 0
self.aggr.entropy_approx = 0
for l in self.layers[1:]:
self.aggr.aggregate(l)
def compute_layer_entropies(self):
for l in self.layers:
l.compute_VN_entropy()
def compute_layer_entropies_approx(self):
for l in self.layers:
l.compute_VN_entropy_approx(self.poly)
def compute_multiplex_entropy(self, force_compute=False):
### The entropy of a multiplex is defined as the sum of the entropies of its layers
for l in self.layers:
if l.entropy == None:
l.compute_VN_entropy()
self.entropy += l.entropy
def compute_multiplex_entropy_approx(self, force_compute=False):
### The entropy of a multiplex is defined as the sum of the entropies of its layers
for l in self.layers:
if l.entropy_approx == None:
l.compute_VN_entropy_approx(self.poly)
self.entropy_approx += l.entropy_approx
def compute_JSD_matrix(self):
if (self.verb):
sys.stderr.write("Computing JSD matrix\n")
self.JSD = np.zeros((self.M, self.M))
for i in range(len(self.layers)):
for j in range(i+1, len(self.layers)):
li = self.layers[i]
lj = self.layers[j]
if not li.entropy:
li.compute_VN_entropy()
if not lj.entropy:
lj.compute_VN_entropy()
# m_sigma = (li.resc_laplacian + lj.resc_laplacian)/2.0
# m_sigma_entropy = mr.compute_VN_entropy_LR(m_sigma)
m_sigma_matr = (li.adj_matr + lj.adj_matr)/2.0
m_sigma = layer(matrix=m_sigma_matr)
m_sigma.compute_VN_entropy()
d = m_sigma.entropy - 0.5 * (li.entropy + lj.entropy)
d = math.sqrt(d)
self.JSD[i][j] = d
self.JSD[j][i] = d
pass
def compute_JSD_matrix_approx(self):
if (self.verb):
sys.stderr.write("Computing JSD matrix (approx)\n")
self.JSD_approx = np.zeros((self.M, self.M))
for i in range(len(self.layers)):
for j in range(i+1, len(self.layers)):
li = self.layers[i]
lj = self.layers[j]
if not li.entropy_approx:
li.compute_VN_entropy_approx(self.poly)
if not lj.entropy_approx:
lj.compute_VN_entropy_approx(self.poly)
m_sigma_matr = (li.adj_matr + lj.adj_matr)/2.0
m_sigma = layer(matrix=m_sigma_matr)
m_sigma.compute_VN_entropy_approx(self.poly)
d = m_sigma.entropy_approx - 0.5 * (li.entropy_approx + lj.entropy_approx)
d = math.sqrt(d)
self.JSD_approx[i][j] = d
self.JSD_approx[j][i] = d
def dump_JSD(self, force_compute=False):
if self.JSD == None:
if force_compute:
self.compute_JSD_matrix()
else:
print "Error!!! call to dump_JSD but JSD matrix has not been computed!!!"
sys.exit(1)
idx = 0
for i in range(self.len):
for j in range(i+1, self.len):
print i, j, self.JSD[idx]
idx += 1
def dump_JSD_approx(self, force_compute=False):
if self.JSD_approx == None:
if force_compute:
self.compute_JSD_matrix_approx()
else:
print "Error!!! call to dump_JSD_approx but JSD approximate matrix has not been computed!!!"
sys.exit(1)
idx = 0
for i in range(self.M):
for j in range(i+1, self.M):
print i, j, self.JSD_approx[idx]
idx += 1
def reduce(self, method="ward"):
if (self.verb):
sys.stderr.write("Performing '%s' reduction\n" % method)
if self.JSD == None:
self.compute_JSD_matrix()
self.Z = linkage(self.JSD, method=method)
return self.Z
def reduce_approx(self, method="ward"):
if (self.verb):
sys.stderr.write("Performing '%s' reduction (approx)\n" % method)
if self.JSD_approx == None:
self.compute_JSD_matrix_approx()
self.Z_approx = linkage(self.JSD_approx, method=method)
return self.Z_approx
def get_linkage(self):
return self.Z
def get_linkage_approx(self):
return self.Z_approx
def __compute_q(self, layers):
H_avg = 0
if not self.aggr:
self.compute_aggregated()
self.aggr.compute_VN_entropy()
for l in layers:
if not l.entropy:
l.compute_VN_entropy()
H_avg += l.entropy
H_avg /= len(layers)
q = 1.0 - H_avg / self.aggr.entropy
return q
def get_q_profile(self):
mylayers = copy.copy(self.layers)
rem_layers = copy.copy(self.layers)
q_vals = []
if self.Z == None:
self.reduce()
q = self.__compute_q(rem_layers)
q_vals.append(q)
n = len(self.layers)
for l1, l2, _d, _x in self.Z:
l_new = layer(matrix=mylayers[int(l1)].adj_matr)
l_new.num_layer = n
n += 1
l_new.aggregate(mylayers[int(l2)])
rem_layers.remove(mylayers[int(l1)])
rem_layers.remove(mylayers[int(l2)])
rem_layers.append(l_new)
mylayers.append(l_new)
q = self.__compute_q(rem_layers)
q_vals.append(q)
self.q_vals = q_vals
return q_vals
pass
def __compute_q_approx(self, layers):
H_avg = 0
if not self.aggr:
self.compute_aggregated()
self.aggr.compute_VN_entropy_approx(self.poly)
for l in layers:
if not l.entropy_approx:
l.compute_VN_entropy_approx(self.poly)
H_avg += l.entropy_approx
H_avg /= len(layers)
q = 1.0 - H_avg / self.aggr.entropy_approx
return q
def get_q_profile_approx(self):
mylayers = copy.copy(self.layers)
rem_layers = copy.copy(self.layers)
q_vals = []
if self.Z_approx == None:
self.reduce_approx()
q = self.__compute_q_approx(rem_layers)
q_vals.append(q)
n = len(self.layers)
for l1, l2, _d, _x in self.Z_approx:
l_new = layer(matrix=mylayers[int(l1)].adj_matr)
l_new.num_layer = n
n += 1
l_new.aggregate(mylayers[int(l2)])
rem_layers.remove(mylayers[int(l1)])
rem_layers.remove(mylayers[int(l2)])
rem_layers.append(l_new)
mylayers.append(l_new)
q = self.__compute_q_approx(rem_layers)
q_vals.append(q)
self.q_vals_approx = q_vals
return q_vals
def compute_partitions(self):
if (self.verb):
sys.stderr.write("Getting partitions...\n")
if self.Z == None:
self.reduce()
if self.q_vals == None:
self.get_q_profile()
sets = {}
M = len(self.layers)
for i in range(len(self.layers)):
sets[i] = [i]
best_pos = self.q_vals.index(max(self.q_vals))
j = 0
cur_part = sets.values()
self.cuts = [copy.deepcopy(cur_part)]
while j < M-1:
l1, l2, _x, _y = self.Z[j]
l1 = int(l1)
l2 = int(l2)
val = sets[l1]
val.extend(sets[l2])
sets[M+j] = val
r1 = cur_part.index(sets[l1])
cur_part.pop(r1)
r2 = cur_part.index(sets[l2])
cur_part.pop(r2)
cur_part.append(val)
j += 1
self.cuts.append(copy.deepcopy(cur_part))
self.cuts.append(copy.deepcopy(cur_part))
return zip(self.q_vals, self.cuts)
def compute_partitions_approx(self):
if (self.verb):
sys.stderr.write("Getting partitions (approx)...\n")
if self.Z_approx == None:
self.reduce_approx()
if self.q_vals_approx == None:
self.get_q_profile_approx()
sets = {}
M = len(self.layers)
for i in range(len(self.layers)):
sets[i] = [i]
best_pos = self.q_vals_approx.index(max(self.q_vals_approx))
j = 0
cur_part = sets.values()
self.cuts_approx = [copy.deepcopy(cur_part)]
while j < M-1:
l1, l2, _x, _y = self.Z_approx[j]
l1 = int(l1)
l2 = int(l2)
val = sets[l1]
val.extend(sets[l2])
sets[M+j] = val
r1 = cur_part.index(sets[l1])
cur_part.pop(r1)
r2 = cur_part.index(sets[l2])
cur_part.pop(r2)
cur_part.append(val)
j += 1
self.cuts_approx.append(copy.deepcopy(cur_part))
self.cuts_approx.append(copy.deepcopy(cur_part))
return zip(self.q_vals_approx, self.cuts_approx)
def draw_dendrogram(self, force = False):
if not has_matplotlib:
sys.stderr.write("No matplotlib module found in draw_dendrogram...Exiting!!!\n")
sys.exit(3)
if self.Z == None:
if not force:
sys.stderr.write("Please call reduce() first or specify 'force=True'")
else:
self.reduce()
dendrogram(self.Z, no_plot=False)
matplotlib.pyplot.draw()
matplotlib.pyplot.show()
def draw_dendrogram_approx(self, force = False):
if not has_matplotlib:
sys.stderr.write("No matplotlib module found in draw_dendrogram_approx...Exiting!!!\n")
sys.exit(3)
if self.Z_approx == None:
if not force:
sys.stderr.write("Please call reduce_approx() first or specify 'force=True'")
else:
self.reduce_approx()
dendrogram(self.Z_approx, no_plot=False)
matplotlib.pyplot.draw()
matplotlib.pyplot.show()
def dump_partitions(self):
part = zip(self.q_vals, self.cuts)
for q, p in part:
print q, "->", p
def dump_partitions_approx(self):
part = zip(self.q_vals_approx, self.cuts_approx)
for q, p in part:
print q, "->", p

@ -0,0 +1,22 @@
import multired as mr
import sys
if len(sys.argv) < 2:
print "Usage: %s <layer_list>" % sys.argv[0]
sys.exit(1)
print "Loading layers...",
m = mr.multiplex_red(sys.argv[1], verbose=True)
print "[DONE]"
print "Getting partitons...",
part = m.compute_partitions()
print "[DONE]"
print "Partitions:..."
m.dump_partitions()
m.draw_dendrogram()

@ -0,0 +1,16 @@
import multired as mr
import sys
if len(sys.argv) < 2:
print "Usage: %s <layer_list>" % sys.argv[0]
sys.exit(1)
m = mr.multiplex_red(sys.argv[1], verbose=True, fit_degree=20)
part = m.compute_partitions_approx()
print "Partitions:..."
m.dump_partitions_approx()
m.draw_dendrogram_approx()

@ -0,0 +1,34 @@
import multired as mr
import sys
if len(sys.argv) < 2:
print "Usage: %s <layer_list>" % sys.argv[0]
sys.exit(1)
print "Loading layers...",
m = mr.multiplex_red(sys.argv[1])
print "[DONE]"
print "Computing layer entropies...",
m.compute_layer_entropies()
print "[DONE]"
print "Computing JSD matrix...",
m.compute_JSD_matrix()
print "[DONE]"
print "Performing reduction...",
m.reduce()
print "[DONE]"
print "Getting partitons...",
part = m.compute_partitions()
print "[DONE]"
print "Partitions:...",
m.dump_partitions()
print "[DONE]"

@ -0,0 +1,34 @@
import multired as mr
import sys
if len(sys.argv) < 2:
print "Usage: %s <layer_list>" % sys.argv[0]
sys.exit(1)
print "Loading layers...",
m = mr.multiplex_red(sys.argv[1])
print "[DONE]"
print "Computing layer entropies (approx)...",
m.compute_layer_entropies_approx()
print "[DONE]"
print "Computing JSD matrix (approx)...",
m.compute_JSD_matrix_approx()
print "[DONE]"
print "Performing reduction (approx)...",
m.reduce_approx()
print "[DONE]"
print "Getting partitons...",
part = m.compute_partitions_approx()
print "[DONE]"
print "Partitions:..."
m.dump_partitions_approx()
print "[DONE]"
Loading…
Cancel
Save