A better solution to remove the last few full matrices around (all of

them were in the "layer" class...)
master
KatolaZ 10 years ago
parent 29cc00c2d4
commit 815c998aa7
  1. 13
      python/multired.py

@ -123,13 +123,8 @@ class layer:
elif matrix != None: elif matrix != None:
self.adj_matr = copy.copy(matrix) self.adj_matr = copy.copy(matrix)
self.N, _x = matrix.shape self.N, _x = matrix.shape
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
#D = np.diag(np.diag(K))
K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0]
D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N))
#K = self.adj_matr.sum(0)
#D = csr_matrix((self.N, self.N))
#D.setdiag(eye(self.N) * K.transpose())
self.laplacian = csr_matrix(D - self.adj_matr) self.laplacian = csr_matrix(D - self.adj_matr)
K = self.laplacian.diagonal().sum() K = self.laplacian.diagonal().sum()
self.resc_laplacian = csr_matrix(self.laplacian / K) self.resc_laplacian = csr_matrix(self.laplacian / K)
@ -140,11 +135,8 @@ class layer:
self.N = N self.N = N
self.adj_matr = csr_matrix((self._ww, (self._ii, self._jj)), shape=(self.N, self.N)) self.adj_matr = csr_matrix((self._ww, (self._ii, self._jj)), shape=(self.N, self.N))
self.adj_matr = self.adj_matr + self.adj_matr.transpose() self.adj_matr = self.adj_matr + self.adj_matr.transpose()
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
#D = np.diag(np.diag(K))
K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0]
D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N))
#D.setdiag(eye(self.N) * K.transpose())
self.laplacian = csr_matrix(D - self.adj_matr) self.laplacian = csr_matrix(D - self.adj_matr)
K = self.laplacian.diagonal().sum() K = self.laplacian.diagonal().sum()
self.resc_laplacian = csr_matrix(self.laplacian / K) self.resc_laplacian = csr_matrix(self.laplacian / K)
@ -179,13 +171,8 @@ class layer:
self.adj_matr = self.adj_matr + other_layer.adj_matr self.adj_matr = self.adj_matr + other_layer.adj_matr
else: else:
self.adj_matr = copy.copy(other_layer.adj_matr) self.adj_matr = copy.copy(other_layer.adj_matr)
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N)))
#D = np.diag(np.diag(K))
K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0]
D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N))
#K = self.adj_matr.sum(0)
#D = csr_matrix((self.N, self.N))
#D.setdiag(eye(self.N) * K. transpose())
self.laplacian = csr_matrix(D - self.adj_matr) self.laplacian = csr_matrix(D - self.adj_matr)
K = self.laplacian.diagonal().sum() K = self.laplacian.diagonal().sum()
self.resc_laplacian = csr_matrix(self.laplacian / K) self.resc_laplacian = csr_matrix(self.laplacian / K)

Loading…
Cancel
Save