|
|
@ -123,13 +123,8 @@ class layer: |
|
|
|
elif matrix != None: |
|
|
|
elif matrix != None: |
|
|
|
self.adj_matr = copy.copy(matrix) |
|
|
|
self.adj_matr = copy.copy(matrix) |
|
|
|
self.N, _x = matrix.shape |
|
|
|
self.N, _x = matrix.shape |
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) |
|
|
|
|
|
|
|
#D = np.diag(np.diag(K)) |
|
|
|
|
|
|
|
K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] |
|
|
|
K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] |
|
|
|
D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) |
|
|
|
D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) |
|
|
|
#K = self.adj_matr.sum(0) |
|
|
|
|
|
|
|
#D = csr_matrix((self.N, self.N)) |
|
|
|
|
|
|
|
#D.setdiag(eye(self.N) * K.transpose()) |
|
|
|
|
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
@ -140,11 +135,8 @@ class layer: |
|
|
|
self.N = N |
|
|
|
self.N = N |
|
|
|
self.adj_matr = csr_matrix((self._ww, (self._ii, self._jj)), shape=(self.N, self.N)) |
|
|
|
self.adj_matr = csr_matrix((self._ww, (self._ii, self._jj)), shape=(self.N, self.N)) |
|
|
|
self.adj_matr = self.adj_matr + self.adj_matr.transpose() |
|
|
|
self.adj_matr = self.adj_matr + self.adj_matr.transpose() |
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) |
|
|
|
|
|
|
|
#D = np.diag(np.diag(K)) |
|
|
|
|
|
|
|
K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] |
|
|
|
K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] |
|
|
|
D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) |
|
|
|
D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) |
|
|
|
#D.setdiag(eye(self.N) * K.transpose()) |
|
|
|
|
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
@ -179,13 +171,8 @@ class layer: |
|
|
|
self.adj_matr = self.adj_matr + other_layer.adj_matr |
|
|
|
self.adj_matr = self.adj_matr + other_layer.adj_matr |
|
|
|
else: |
|
|
|
else: |
|
|
|
self.adj_matr = copy.copy(other_layer.adj_matr) |
|
|
|
self.adj_matr = copy.copy(other_layer.adj_matr) |
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) |
|
|
|
|
|
|
|
#D = np.diag(np.diag(K)) |
|
|
|
|
|
|
|
K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] |
|
|
|
K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] |
|
|
|
D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) |
|
|
|
D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) |
|
|
|
#K = self.adj_matr.sum(0) |
|
|
|
|
|
|
|
#D = csr_matrix((self.N, self.N)) |
|
|
|
|
|
|
|
#D.setdiag(eye(self.N) * K. transpose()) |
|
|
|
|
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
|