|
|
@ -126,7 +126,8 @@ class layer: |
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) |
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) |
|
|
|
#D = np.diag(np.diag(K)) |
|
|
|
#D = np.diag(np.diag(K)) |
|
|
|
K = self.adj_matr.sum(0) |
|
|
|
K = self.adj_matr.sum(0) |
|
|
|
D = K * eye(self.N) |
|
|
|
D = csr_matrix((self.N, self.N)) |
|
|
|
|
|
|
|
D.setdiag(eye(self.N) * K.transpose()) |
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
@ -140,12 +141,13 @@ class layer: |
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) |
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) |
|
|
|
#D = np.diag(np.diag(K)) |
|
|
|
#D = np.diag(np.diag(K)) |
|
|
|
K = self.adj_matr.sum(0) |
|
|
|
K = self.adj_matr.sum(0) |
|
|
|
D = K * eye(self.N) |
|
|
|
D = csr_matrix((self.N, self.N)) |
|
|
|
|
|
|
|
D.setdiag(eye(self.N) * K.transpose()) |
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
|
self._matrix_called = True |
|
|
|
self._matrix_called = True |
|
|
|
|
|
|
|
|
|
|
|
def dump_info(self): |
|
|
|
def dump_info(self): |
|
|
|
N, M = self.adj_matr.shape |
|
|
|
N, M = self.adj_matr.shape |
|
|
|
K = self.adj_matr.nnz |
|
|
|
K = self.adj_matr.nnz |
|
|
@ -178,13 +180,15 @@ class layer: |
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) |
|
|
|
#K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) |
|
|
|
#D = np.diag(np.diag(K)) |
|
|
|
#D = np.diag(np.diag(K)) |
|
|
|
K = self.adj_matr.sum(0) |
|
|
|
K = self.adj_matr.sum(0) |
|
|
|
D = K * eye(self.N) |
|
|
|
D = csr_matrix((self.N, self.N)) |
|
|
|
|
|
|
|
D.setdiag(eye(self.N) * K. transpose()) |
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
self.laplacian = csr_matrix(D - self.adj_matr) |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
K = self.laplacian.diagonal().sum() |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
|
self.resc_laplacian = csr_matrix(self.laplacian / K) |
|
|
|
self._matrix_called = True |
|
|
|
self._matrix_called = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def dump_laplacian(self): |
|
|
|
|
|
|
|
print self.laplacian |
|
|
|
|
|
|
|
|
|
|
|
class multiplex_red: |
|
|
|
class multiplex_red: |
|
|
|
|
|
|
|
|
|
|
|